摘要:
A coplanar waveguide based microwave monolithic integrated circuit (MMIC) oscillator chip (14) having an active oscillator element (16) and a resonant capacitor (18) formed thereon is flip-chip mounted on a dielectric substrate (12). A resonant inductor (22) is formed on the substrate (12) and interconnected with the resonant capacitor (18) to form a high Q-factor resonant circuit for the oscillator (10). The resonant inductor (22) includes a shorted coplanar waveguide section (24) consisting of first and second ground strips (24b,24c), and a conductor strip (24a) extending between the first and second ground strips (24b,24c) in parallel relation thereto and being separated therefrom by first and second spaces (26a,26b) respectively. A shorting strip (24d) electrically interconnects adjacent ends of the conductor strip (24a) and first and second ground strips (24b,24c) respectively. A dielectric film (34) may be formed over at least adjacent portions of the conductor strip (24 a) and first and second ground strips (24b,24c). The resonant inductor (22) is adjusted to provide a predetermined resonant frequency for the oscillator (10) by using a laser (40) to remove part of the dielectric film (34) in the first and second spaces (26a,26b) for fine adjustment, and/or to remove part of the shorting strip (24d) at the ends of the first and second spaces (26a,26b) for coarse adjustment.
摘要:
A double drift IMPATT diode is formed from two semiconductors having different band gaps and carrier mobilities. The avalanche portion of the diode is created in the semiconductor having the lower band gap. The electron drift portion is created in the semiconductor having the higher electron mobility and the hole drift portion is created in the semiconductor having the higher hole mobility. This decreases the voltage required across the avalanche portion, decreases the series resistance, and thus increases the efficiency of the diode.
摘要:
A multi-layer collector heterojunction transistor (10) provides for high power, high efficiency transistor amplifier operation, especially in the RF (radio frequency) range of operation. A larger band gap first collector layer (12), approximately 15% of the active collector region (11) thickness, is provided at the base-collector junction (13). A smaller band gap second collector layer (14) forms the remainder of the active collector region (11). The multi-layer collector structure provides higher reverse bias breakdown voltage and higher carrier mobility during relevant portions of the output signal swing. A lower saturation voltage limit, or "knee" voltage, is provided at the operating points where linear operating regions transition to saturation operating regions as depicted in the output voltage-current (I-V) characteristic curves. The magnitude of the output signal swing of an amplifier may be increased, providing higher power amplification with greater power efficiency. The power supply voltage for the amplifier may be increased, providing for the use of a smaller, lighter power supply.
摘要:
A cone-shaped bubbler for use with solid metal organic source material used in metal organic chemical vapor phase deposition systems, and a method of producing carrying gas saturated with source material that is injected into such systems. The bubbler comprises a sealed container having a slanted wall with an inverted cone-shaped cross section. Solid metal organic source material is disposed in the container. A heat bath surrounds the sealed container. A carrying gas inlet is disposed adjacent the top of the container. Carrying gas is injected in a tangential direction relative to the source material, and a whirlpool effect is generated by the tangential gas flow that imparts a centrifugal force to gas molecules, pushing the source material against the wall to promote heat flow from the heat bath to sustain high rate sublimation. A gas outlet is disposed adjacent the bottom of the container. Once source material lining the slanted inner wall is removed, gravitational forces cause source material to refill the empty space, reducing channel formation and preventing thermal isolation of the source material at the center of the bubbler. The method comprises providing a sealed container with a slanted wall having an inverted cone-shaped cross section, disposing solid metal organic source material in the container, heating the sealed container, injecting a carrying gas adjacent the top of the container so that carrying gas is injected in a tangential direction relative to the solid source material, and removing saturated carrying gas from a gas outlet disposed adjacent the bottom of the container.
摘要:
A relatively high power active gain device, such as MESFET or similar transistor, has distributed impedance characteristics at relatively high RF (microwave) frequencies of operation due to physical device size limitations. A transmission line segment (104) is placed in relatively close spacial relationship and is coupled in parallel electrical relationship with the input port (162) of the high power active device. This provides for highly simplified design of an impedance prematched amplifier (100) over a relatively broad range of predetermined input signal center frequencies. An active device (102) is provided based on power requirements and is characterized over a range of center frequencies and device sizes independently from the characterization of the transmission line segment (104) over a range of center frequencies and segment lengths, since the impedance characteristics of the active device (102) and the transmission line (104) are not dependent upon each other. Based on a predetermined operating center frequency and on the input source impedance characteristics, an appropriate pre-characterized transmission line segment (104) is paired with an appropriate pre-characterized active device (102) based on a simplified model for the prematched amplifier (100). Characterization procedures are therefore simplified and relatively inexpensive. The design cycle for a prematched amplifier is considerably simplified, shortened, and reduced in cost.
摘要:
A gallium arsenide Monolithic-Microwave-Integrated-Circuit (MMIC) flip chip or other microelectronic circuit structure (10) includes a plated gold bridge (28) which serves as metal interconnect crossover between sites (24,-26) on a substrate (12). A first inorganic dielectric passivation layer (16), preferably of silicon dioxide, is formed under and supports the bridge (28). A second inorganic dielectric passivation layer (30), also preferably of silicon dioxide, is formed over and encapsulates the bridge (28) and the chip surface. A titanium/gold/titanium membrane (22) is formed under the bridge (28) to enable adhesion of the bridge (28) to the first passivation layer (16) and form plating contacts for the bridge (28). A contact bump post (38) is formed in a bump hole or via (32) which extends through the first and second passivation layers (16,30) to a bump contact site (34) on the substrate (12). Another titanium/gold/titanium membrane (40) is formed on the bump post (38) and the wall of the bump via (32) to provide a plating contact for a bump (42) which is plated on the membrane (40) inside the bump via (32) where the bump post (38) is located.
摘要:
A multiple quantum well (MQW) radiation sensor eliminates tunneling current from the photoactivated current that provides an indication of incident radiation, and yet preserves a substantial bias voltage across the superlattice, by fabricating an intermediate contact layer between the superlattice and a tunneling blocking layer. Using the intermediate contact layer to apply a bias voltage across the superlattice but not the blocking layer, the photoexcited current flow through the intermediate contact and blocking layers is taken as an indication of the incident radiation. The width of the intermediate contact layer and the barrier energy height of the blocking layer relative to that of the superlattice barrier layers are selected to enable a substantial photoexcited current flow across the blocking layer. The thickness of the intermediate contact layer is preferably not more than about 1 photoexcited charge carrier mean-free path length, while the blocking layer's barrier energy height is preferably at least about 1 phonon energy level below that of the superlattice barrier layers.
摘要:
A microwave monolithic integrated circuit (MMIC) (40), includes a substrate (60), and an input bus (62), output bus (64), ground bus (66) and bias bus (68) formed as striplines of a four-line coplanar waveguide on the substrate (60) with the input bus (62) and output bus (64) disposed between the ground bus (66) and bias bus (68). A plurality of spatially distributed cascode amplifier units (43) are formed on the substrate (60), each including an input heterojunction bipolar transistor (HBT) (42) connected in a common-emitter configuration, and an output HBT (44) connected in a common-base configuration. The input HBT (42) has an emitter (E.sub.1) connected to the ground bus (66), a base (B.sub.1) connected to the input bus (62) and a collector (C.sub.1). The output HBT (44) has an emitter (E.sub.2) connected to the collector (C.sub.1) of the input HBT (42), a base (B.sub.2) connected to the bias bus (68) and a collector (C.sub.2) connected to the output bus (64). The distributed amplifier arrangement enables the HBTs (42,44) to operate with balanced electrical parameters and high thermal isolation and heat dissipation.
摘要:
Three active FET baluns, using resonant, reactive and resistive/reactive compensation are disclosed suitable for monolithic implementation. A single balanced mixer configuration including a resistive/reactive active FET balun coupled with a pair of single ended FET mixers in a push pull configuration is disclosed which is also suitable for monolithic implementation.
摘要:
A field effect transistor FMCW radar transceiver for short-range target detection, employs a varactor-tuned, gallium arsenide field effect transistor, voltage-controlled oscillator in the dual role of the transmitter signal source and the local oscillator. The radar transceiver is capable of operating at low IF frequencies for short range, which can be less than 30 feet, target detection.