Abstract:
Systems for cooling the backside of a semiconductor die located in a die-down integrated circuit (IC) package are described. The IC package is attached to the topside of a printed circuit board (PCB) with the backside of the die residing below the topside surface of the PCB. A cooling plate is attached to the backside of the die and thermally connected to a heat sink located above the topside surface of the PCB via conduits that pass through openings in the PCB.
Abstract:
A microelectronic package comprises a substrate (110, 310), a die (320) supported by the substrate, an interconnect feature (130, 230, 330) connecting the die and the substrate to each other, and a thermoelectric cooler (140, 170, 240, 340) adjacent to the interconnect feature.
Abstract:
A microelectronic combination and a method of making the combination. The combination includes a package substrate including a substrate body having a peripheral surface and contacts disposed at the peripheral surface; and a surface mount component electrically and mechanically bonded to the contacts.
Abstract:
The disclosed embodiments relate to the formation of an electrical contact using a skiving technique. The electrical contact includes a spring structure that has been skived away from an underlying metal body, but the spring remains coupled with the metal body which provides a base for the spring structure. The skived spring portion of the electrical contact may comprise a cantilever-like spring, a coil-like spring, or any other suitable type of spring. Such a spring contact may be used to form an electrical connection between an integrated circuit device and a circuit board (or other substrate). Other embodiments are described and claimed.
Abstract:
A substrate is provided that may include an area designated for mounting of an integrated circuit and one or more areas for retaining a thermal interface material proximate the integrated circuit mounting area. A thermal interface material containment area(s) may be formed by creating a through-hole in the substrate, or a recess in the substrate that opens either to the die placement side or the opposite side of the substrate.
Abstract:
A microelectronic die assembly including a heat dissipation device serving as a support structure for the assembly is described. A first microelectronic die is attached by a back surface to a first surface of the heat dissipation device. A first plurality of interconnects are disposed on an active surface of the first microelectronic die. A second microelectronic die is attached by a back surface to the first microelectronic die active surface. A second plurality of interconnects are disposed on an active surface of the second microelectronic die. Any appropriate number of microelectronic dice may be stacked in a like fashion.
Abstract:
One embodiment of the present invention is an electronic assembly which may have a first integrated circuit package mounted to a first side of a substrate and a second integrated circuit package mounted to a second side of the substrate. A thermal plate may be thermally coupled to the first integrated circuit package. A heat sink may be mounted to the thermal plate. A thermal bus may be is thermally coupled to the second integrated circuit package and the thermal plate. The thermal bus bar allows heat to flow from the second integrated circuit package to the thermal plate and heat sink. The electronic assembly of the present invention can thus remove heat from integrated circuit packages located on both sides of a substrate with only one heat sink.
Abstract:
An electrical cartridge of the present invention includes a spring that pushes an integrated circuit package into a thermal plate. The integrated circuit package and substrate are attached to a substrate such as a printed circuit board. A cover may be attached to an opposite side of the substrate. There is typically a space between the integrated circuit package and the thermal plate that is filled with a thermal grease. The spring is located between the cover and the substrate in a manner which deflects the spring and exerts a force on the substrate. The spring force pushes the substrate and the integrated circuit package into the thermal plate. The spring may be designed to always provide a sufficient force to ensure a minimum space between the integrated circuit package and the thermal plate for assemblies produced in a mass production process.
Abstract:
An electronic cartridge that includes a pair of fans which push and pull air from a heat sink of an electronic cartridge. The heat sink is mounted to the electronic cartridge. The cartridge may include integrated circuit packages which generate heat that flows into the heat sink. A first fan is attached to the heat sink and induces a flow of air into the sink. A second fan is attached to the heat sink and induces a flow of air away from the sink. The heat sink typically has a plurality of fins that are separated by a plurality of channels. The fans induce a flow of air across the channels from the first fan to the second fan. The flow of air across the channels reduces the likelihood of dead air zones within the heat sink and hot spots on the cartridge.
Abstract:
A massive array antenna apparatus is configured with a cantilevered heat pipe that allows a semiconductive millimeter-wave device to move independently from a heat-sink base during thermal expansion and contraction.