Abstract:
A high-voltage LDMOSFET includes a semiconductor substrate, in which a gate well is formed. A source well and a drain well are formed on either side of the gate well, and include insulating regions within them that do not reach the full depth. An insulating layer is disposed on the substrate, covering the gate well and a portion of the source well and the drain well. A conductive gate is disposed on the insulating layer. Biasing wells are formed adjacent the source well and the drain well. A deep well is formed in the substrate such that it communicates with the biasing wells and the gate well, while extending under the source well and the drain well, such as to avoid them. Biasing contacts at the top of the biasing wells bias the deep well, and therefore also the gate well.
Abstract:
A memory circuit includes a memory array with multi-level cells that are each capable of storing M bits of data, where M is an integer greater than one. A module reads a state of one of the multi-level cells. The module performs at least one of a first erase operation and a first program operation on the one of the multi-level cells for the M bits of data during a first time period.
Abstract:
A memory device including a plurality of storage regions arranged with storage region intervals. A plurality of conductor lines are juxtaposed the storage region intervals. One or more isolations are provided, each isolation adjacent one or more conductor lines and juxtaposed one or more of the storage regions that are dummy storage regions. The storage regions are charge storage regions in memory cells and each memory cell further includes a first cell region, a second cell region and a cell channel juxtaposed the charge storage region and located between the first cell region and the second cell region. A first array region and a second array region are separated by a first one of the isolations; each array region includes one or more groups of the memory cells where each memory cell includes one of the storage regions.
Abstract:
A semiconductor device comprising a memory region including one or more transistor string arrays, a logic region including one or more logic transistors and an isolation region for isolating the logic transistors. The string array includes a plurality, T, of bipolar junction transistors. The string array includes a common collector region for the T bipolar junction transistors, a common base region for the T bipolar junction transistors, a plurality of emitters, one emitter for each of the T bipolar junction transistors, a number, B, of base contacts for the T bipolar junction transistors where the base contacts electrically couple the common base region and where the number of base contacts, B, is less than the number of transistors, T.
Abstract:
A management system for tracking elements through steps and stages of a chain employing fixed tags permanently attached to elements that progress through the steps and stages. The elements are tracked by the fixed tags from an initial stage, through multiple work-in-process stages to a final stage of the chain. The fixed tags include radio-frequency (RF) communication units that have wireless communication with RF communicators in one or more of the stages of the supply chain. The wireless communications between the RF tags and the RF communicators operate with a tag communication protocol that defines the operations and sequences for storing information into and retrieval of information from tags. The hierarchy of data storage in RF tags, in RF communicators and otherwise in storage locations in the system is controlled to operate within the memory hierarchy.
Abstract:
A nonvolatile memory cell is provided. The cell has a charge filter, a tunneling gate, a ballistic gate, a charge storage layer, a source, and a drain with a channel defined between the source and drain. The charge filter permits transporting of charge carriers of one polarity type from the tunneling gate through the blocking material and the ballistic gate to the charge storage layer while blocking the transport of charge carriers of an opposite polarity from the ballistic gate to the tunneling gate. Further embodiments of the present invention provide a cell having a charge filter, a supplier gate, a tunneling gate, a ballistic gate, a source, a drain, a channel, and a charge storage layer. The present invention further provides an energy band engineering method permitting the memory cell be operated without suffering from disturbs, from dielectric breakdown, from impact ionization, and from undesirable RC effects.
Abstract:
A method for controlling an operating mode of a portable electronic device having a first plane and a second plane connected together comprises forming a magnet in the first plane, forming a magnetic flux sensor in a position of the second plane corresponding to the magnet for sensing magnetic flux, and controlling the operating mode of the portable electronic device according to the sensing result of the magnetic flux sensor.
Abstract:
A system for tracking elements employing fixed tags that are permanently attached internally or externally to elements. The tags include radio-frequency (RF) communication units that have wireless communication with RF communicators. The wireless communications between the RF tags and the RF communicators operate with a tag communication protocol that defines the operations and sequences for storing information into and retrieval of information from tags. Each communicator has a processor for controlling a security routine with the tag. Each tag has a tag memory having storage locations for storing security information, a controller for accessing the tag memory to access security information in response to the security routine and an I/O unit for electronic communication with the controller and for RF communication with the communicator.
Abstract:
In one embodiment, a structure includes a semiconductor chip including a communication element for performing a wireless communication function where the communication element has a communication core occupying a region of the semiconductor chip, a plurality of chip pads with two of the chip pads electrically connected to the communication core; a chip carrier for carrying the semiconductor chip where the chip carrier includes a plurality of carrier pads with two of the carrier pads connected to the two chip pads; and an antenna connected to the carrier pads and electrically connected to the chip pads and to the communication core.
Abstract:
A method of providing a memory cell comprises providing a semiconductor substrate including a body of a first conductivity type, first and second regions of a second conductivity type and a channel between the first and second regions; arranging a first insulator layer adjacent to the channel; arranging a charge storage region adjacent to the first insulator layer; arranging a second insulator layer adjacent to the charge storage region; arranging a first conductive region adjacent to the second insulator layer; arranging a filter adjacent to the first conductive region; and arranging a second conductive region adjacent to the filter. The second conductive region overlaps the first conductive region at an overlap surface. A line perpendicular to the overlap surface intersects at least a portion of the charge storage region.