Method for manufacturing nitride semiconductor device
    22.
    发明授权
    Method for manufacturing nitride semiconductor device 有权
    氮化物半导体器件的制造方法

    公开(公告)号:US07825012B2

    公开(公告)日:2010-11-02

    申请号:US12501511

    申请日:2009-07-13

    IPC分类号: H01L21/20 H01L21/36 H01L21/00

    摘要: A method for manufacturing a nitride semiconductor device, includes forming a p-type nitride semiconductor layer on a substrate, from an organic metal compound as a group III element source material, ammonia and a hydrazine derivative as group V element source materials, and a Mg source material gas as a p-type impurity source material. The flow velocity of the source material gases including the group III element source material, the group V element source materials, and the p-type impurity source material is more than 0.2 m/sec.

    摘要翻译: 一种氮化物半导体器件的制造方法,包括在作为第III族元素源材料的有机金属化合物,氨和肼衍生物作为V族元素源材料的基板上形成p型氮化物半导体层,以及Mg 源材料气体作为p型杂质源材料。 包括III族元素源材料,V族元素源材料和p型杂质源材料的源材料气体的流速大于0.2m / sec。

    METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR DEVICE
    23.
    发明申请
    METHOD FOR MANUFACTURING NITRIDE SEMICONDUCTOR DEVICE 有权
    制造氮化物半导体器件的方法

    公开(公告)号:US20100075483A1

    公开(公告)日:2010-03-25

    申请号:US12501511

    申请日:2009-07-13

    IPC分类号: H01L21/20

    摘要: A method for manufacturing a nitride semiconductor device, includes forming a p-type nitride semiconductor layer on a substrate, from an organic metal compound as a group III element source material, ammonia and a hydrazine derivative as group V element source materials, and a Mg source material gas as a p-type impurity source material. The flow velocity of the source material gases including the group III element source material, the group V element source materials, and the p-type impurity source material is more than 0.2 m/sec.

    摘要翻译: 一种氮化物半导体器件的制造方法,包括在作为第III族元素源材料的有机金属化合物,氨和肼衍生物作为V族元素源材料的基板上形成p型氮化物半导体层,以及Mg 源材料气体作为p型杂质源材料。 包括III族元素源材料,V族元素源材料和p型杂质源材料的源材料气体的流速大于0.2m / sec。

    NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE AND OPTICAL SEMICONDUCTOR DEVICE, AND METHODS FOR PRODUCING THE SAME
    24.
    发明申请
    NITRIDE SEMICONDUCTOR LAMINATED STRUCTURE AND OPTICAL SEMICONDUCTOR DEVICE, AND METHODS FOR PRODUCING THE SAME 有权
    氮化物半导体层叠结构和光学半导体器件及其制造方法

    公开(公告)号:US20090236589A1

    公开(公告)日:2009-09-24

    申请号:US12404647

    申请日:2009-03-16

    IPC分类号: H01L51/30 H01L51/40

    摘要: A nitride semiconductor laminated structure comprises: a substrate; a first p-type nitride semiconductor layer formed using an organometallic compound as a Group III element source material, a p-type impurity source material and ammonia as a Group V element source material, with the hydrogen concentration in the first p-type nitride semiconductor layer being 1×1019 cm−3 or less; and a second p-type nitride semiconductor layer on the first p-type nitride semiconductor layer by formed using an organometallic compound as a Group III element source material, a p-type impurity source material, and ammonia and a hydrazine derivatives as Group V element source materials, with the carbon concentration in the second p-type nitride semiconductor layer being 1×1018 cm−3 or less.

    摘要翻译: 氮化物半导体层叠结构包括:基板; 使用有机金属化合物作为III族元素源材料形成的第一p型氮化物半导体层,p型杂质源材料和作为V族元素源的氨,第一p型氮化物半导体中的氢浓度 层为1×10 19 cm -3以下; 以及通过使用有机金属化合物作为III族元素源材料,p型杂质源材料和氨以及作为V族元素的肼衍生物形成的第一p型氮化物半导体层上的第二p型氮化物半导体层 源材料,第二p型氮化物半导体层中的碳浓度为1×10 18 cm -3以下。

    Method of manufacturing semiconductor light emitting device
    25.
    发明授权
    Method of manufacturing semiconductor light emitting device 有权
    制造半导体发光器件的方法

    公开(公告)号:US07172429B2

    公开(公告)日:2007-02-06

    申请号:US11326509

    申请日:2006-01-06

    IPC分类号: H01L21/00

    摘要: The present invention provides a semiconductor light emitting device where a spatial change in an In composition ratio is small within a plane of an active layer and device properties such as efficiency of light emission are excellent, and a manufacturing method thereof. An active layer having an InGaN quantum well structure is formed in such a manner that a ratio of a photoluminescence light emission intensity at 300 K to a photoluminescence light emission intensity at 5 K becomes 0.1 or less. The ratio of the photoluminescence light emission intensity reflects the degree of the spatial change in an In composition ratio in a quantum confined structure. In addition, a smaller value indicates a higher spatial uniformity in the In composition ratio. Therefore, there is greater spatial uniformity in the In composition ratio in the active layer, increasing the probability of radiative recombination of carriers occurring, by making the ratio of photoluminescence light emission intensity 0.1 or less; thus, it becomes possible to obtain a semiconductor light emitting device having high efficiency in light emission.

    摘要翻译: 本发明提供一种半导体发光器件,其中In组成比的空间变化在有源层的平面内较小,并且诸如发光效率的器件性能优异,及其制造方法。 形成具有InGaN量子阱结构的有源层,使得在300K下的光致发光发光强度与5K的光致发光发光强度的比例为0.1以下。 光致发光强度的比率反映了量子限制结构中In组成比的空间变化程度。 另外,较小的值表示In组成比中较高的空间均匀性。 因此,有源层的In组成比有更大的空间均匀性,通过使光致发光发光强度的比例为0.1以下,增加载体发生辐射复合的可能性; 因此,可以获得具有高发光效率的半导体发光器件。

    Semiconductor light emitting device and manufacturing method thereof
    26.
    发明申请
    Semiconductor light emitting device and manufacturing method thereof 有权
    半导体发光器件及其制造方法

    公开(公告)号:US20060166392A1

    公开(公告)日:2006-07-27

    申请号:US11326509

    申请日:2006-01-06

    IPC分类号: H01L21/00

    摘要: The present invention provides a semiconductor light emitting device where a spatial change in an In composition ratio is small within a plane of an active layer and device properties such as efficiency of light emission are excellent, and a manufacturing method thereof. An active layer having an InGaN quantum well structure is formed in such a manner that a ratio of a photoluminescence light emission intensity at 300 K to a photoluminescence light emission intensity at 5 K becomes 0.1 or less. The ratio of the photoluminescence light emission intensity reflects the degree of the spatial change in an In composition ratio in a quantum confined structure. In addition, a smaller value indicates a higher spatial uniformity in the In composition ratio. Therefore, there is greater spatial uniformity in the In composition ratio in the active layer, increasing the probability of radiative recombination of carriers occurring, by making the ratio of photoluminescence light emission intensity 0.1 or less; thus, it becomes possible to obtain a semiconductor light emitting device having high efficiency in light emission.

    摘要翻译: 本发明提供一种半导体发光器件,其中In组成比的空间变化在有源层的平面内较小,并且诸如发光效率的器件性能优异,及其制造方法。 形成具有InGaN量子阱结构的有源层,使得在300K下的光致发光发光强度与5K的光致发光发光强度的比例为0.1以下。 光致发光强度的比率反映了量子限制结构中In组成比的空间变化程度。 另外,较小的值表示In组成比中较高的空间均匀性。 因此,有源层的In组成比有更大的空间均匀性,通过使光致发光发光强度的比例为0.1以下,增加载体发生辐射复合的可能性; 因此,可以获得具有高发光效率的半导体发光器件。

    Semiconductor laser device
    27.
    发明申请
    Semiconductor laser device 审中-公开
    半导体激光器件

    公开(公告)号:US20060091421A1

    公开(公告)日:2006-05-04

    申请号:US11175379

    申请日:2005-07-07

    IPC分类号: H01L31/109

    摘要: A semiconductor laser device according to the present invention comprises: an n-band discontinuity reduction layer (n-BDR layer) disposed on an n-GaAs substrate and the n-BDR layer including an AlGaAs layer whose concentration of Si doped as an n-type impurity is in a range from 0.2×1018 cm−3 to 1.4×1018 cm−3; an n-type cladding layer of AlGaInP disposed on the n-BDR layer; an active layer including a quantum well disposed on the n-type cladding layer; and a p-type cladding layer of AlGaInP disposed on the active layer.

    摘要翻译: 根据本发明的半导体激光器件包括:设置在n-GaAs衬底上的n波段不连续性还原层(n-BDR层),以及n-BDR层,其包含掺杂为n-Si衬底的Si的浓度的AlGaAs层, 类型杂质在0.2×10 30 -3 -3至1.4×10 18 cm -3范围内; 设置在n-BDR层上的AlGaInP的n型包覆层; 包括在n型包覆层上设置的量子阱的有源层; 以及设置在有源层上的AlGaInP的p型覆层。

    Substrate holder for MOCVD
    28.
    发明授权
    Substrate holder for MOCVD 失效
    MOCVD基板支架

    公开(公告)号:US5782979A

    公开(公告)日:1998-07-21

    申请号:US489773

    申请日:1995-06-13

    摘要: A substrate holder employed for MOCVD and supporting a wafer on which crystal growth proceeds includes a molybdenum holder body, a GaAs polycrystalline film with a flat surface grown on a part of the surface of the molybdenum holder body where the wafer is absent, and an InP polycrystalline film grown on the GaAs polycrystalline film. Each of the polycrystalline films is grown to a thickness of 0.3 .mu.m or more at a temperature higher than the epitaxial growth temperature of 575.degree. C. During the MOCVD process, the emissivity of the molybdenum substrate holder is stable at a value near the emissivity of the wafer on the substrate holder and, therefore, the decomposition ratio of PH.sub.3 gas on the substrate holder is stable at a value near the decomposition ratio on the wafer, whereby any variation of the incorporation ratio of P atoms in the grown InGaAsP, i.e., a variation of the composition of the InGaAsP, is reduced and run-to-run variations of the composition of the grown crystal are reduced.

    摘要翻译: 用于MOCVD并支撑晶体生长所进行的晶片的衬底保持器包括钼保持器主体,在不存在晶片的钼保持器主体的表面的一部分上生长的具有平坦表面的GaAs多晶膜,以及InP 在GaAs多晶膜上生长的多晶膜。 在比575℃的外延生长温度高的温度下,将多晶膜生长至0.3μm以上的厚度。在MOCVD工艺中,钼基板保持器的发射率在发射率附近稳定 因此衬底保持器上的PH3气体的分解比例在晶片分解比附近稳定,因此生长的InGaAsP中P原子的掺入比例,即 ,InGaAsP的组成的变化减小,并且生长晶体的组成的运行变化减小。

    Semiconductor device manufacturing method
    30.
    发明授权
    Semiconductor device manufacturing method 有权
    半导体器件制造方法

    公开(公告)号:US07632695B2

    公开(公告)日:2009-12-15

    申请号:US11941195

    申请日:2007-11-16

    IPC分类号: H01L21/00

    摘要: A technique is provided which enables formation of nitride semiconductor layers with excellent flatness and excellent crystallinity on a gallium nitride substrate (GaN substrate), while improving the producibility of the semiconductor device using the GaN substrate. A gallium nitride substrate is prepared which has an upper surface having an off-angle of not less than 0.1° nor more than 1.0° in a direction, with respect to a (0001) plane. Then, a plurality of nitride semiconductor layers including an n-type semiconductor layer are stacked on the upper surface of the gallium nitride substrate to form a semiconductor device such as a semiconductor laser.

    摘要翻译: 提供了一种能够在氮化镓衬底(GaN衬底)上形成具有优异的平坦度和优异的结晶度的氮化物半导体层的技术,同时提高了使用GaN衬底的半导体器件的可制造性。 制备氮化镓衬底,其具有相对于(0001)面在<1-100>方向上具有不小于0.1°且不大于1.0°的偏角的上表面。 然后,在氮化镓衬底的上表面上堆叠包括n型半导体层的多个氮化物半导体层,以形成诸如半导体激光器的半导体器件。