摘要:
Approaches for the foil-based metallization of solar cells and the resulting solar cells are described. In an example, a solar cell includes a substrate. A plurality of alternating N-type and P-type semiconductor regions is disposed in or above the substrate. A conductive contact structure is disposed above the plurality of alternating N-type and P-type semiconductor regions. The conductive contact structure includes a plurality of metal seed material regions providing a metal seed material region disposed on each of the alternating N-type and P-type semiconductor regions. A metal foil is disposed on the plurality of metal seed material regions, the metal foil having anodized portions isolating metal regions of the metal foil corresponding to the alternating N-type and P-type semiconductor regions.
摘要:
A system and method of patterning dopants of opposite polarity to form a solar cell is described. Two dopant films are deposited on a substrate. A laser is used to pattern the N-type dopant, by mixing the two dopant films into a single film with an exposure to the laser and/or drive the N-type dopant into the substrate to form an N-type emitter. A thermal process drives the P-type dopant from the P-type dopant film to form P-type emitters and further drives the N-type dopant from the single film to either form or further drive the N-type emitter.
摘要:
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
摘要:
A laser system with multiple laser pulses for removing material from a solar cell being fabricated. The laser system includes a single pulse laser source and a multi-pulse generator. The multi-pulse generator receives a single pulse laser beam from the single pulse laser source and converts the single pulse laser beam into a multi-pulse laser beam. A laser scanner scans the multi-pulse laser beam onto the solar cell to remove material from the solar cell.
摘要:
A dielectric film stack of a solar cell is ablated using a laser. The dielectric film stack includes a layer that is absorptive in a wavelength of operation of the laser source. The laser source, which fires laser pulses at a pulse repetition rate, is configured to ablate the film stack to expose an underlying layer of material. The laser source may be configured to fire a burst of two laser pulses or a single temporally asymmetric laser pulse within a single pulse repetition to achieve complete ablation in a single step.
摘要:
The formation of solar cell contacts using a laser is described. A method of fabricating a back-contact solar cell includes forming a poly-crystalline material layer above a single-crystalline substrate. The method also includes forming a dielectric material stack above the poly-crystalline material layer. The method also includes forming, by laser ablation, a plurality of contacts holes in the dielectric material stack, each of the contact holes exposing a portion of the poly-crystalline material layer; and forming conductive contacts in the plurality of contact holes.
摘要:
Thermocompression bonding approaches for foil-based metallization of non-metal surfaces of solar cells, and the resulting solar cells, are described. For example, a solar cell includes a substrate and a plurality of alternating N-type and P-type semiconductor regions disposed in or above the substrate. A plurality of conductive contact structures is electrically connected to the plurality of alternating N-type and P-type semiconductor regions. Each conductive contact structure includes a metal foil portion disposed in direct contact with a corresponding one of the alternating N-type and P-type semiconductor regions.
摘要:
Solar cells having a plurality of sub-cells coupled by metallization structures having a metal bridge, and singulation approaches to forming solar cells having a plurality of sub-cells coupled by metallization structures, are described. In an example, the metal bridge can provide structural support and provide for an electrical connection between a first contact pad and a first busbar. Adjacent ones of the singulated and physically separated semiconductor substrate portions have a groove there between and where the metal bridge can be perpendicular to the groove. The solar cell can include a first contact pad adjacent to a second contact pad.
摘要:
Approaches for foil-based metallization of solar cells and the resulting solar cells are described. For example, a method of fabricating a solar cell involves locating a metal foil above a plurality of alternating N-type and P-type semiconductor regions disposed in or above a substrate. The method also involves laser welding the metal foil to the alternating N-type and P-type semiconductor regions. The method also involves patterning the metal foil by laser ablating through at least a portion of the metal foil at regions in alignment with locations between the alternating N-type and P-type semiconductor regions. The laser welding and the patterning are performed at the same time.
摘要:
Solar cells can include a plurality of sub-cells that include a singulated and physically separated semiconductor portion such that adjacent ones of the singulated and physically separated semiconductor portions can have a groove therebetween. The solar cells can include a metallization structure that couples ones of the plurality of sub-cells. An interconnect structure can couple adjacent ones of the solar cells.