Abstract:
A phase lock loop with multiple divider paths is presented herein. The phase lock loop can be used to provide a wide range of frequencies. The phase lock loop can also be used as a portion of a clock multiplier unit or a clock data and recovery unit.
Abstract:
Method and circuitry for improving the accuracy and efficiency of a phase-locked loop. More specifically, the present invention relates to a method and device for monitoring the frequency discrepancy between two signals in conjunction with at least one data signal so as to improve the accuracy and efficiency of a phase-locked loop. In one embodiment of the present invention, two counters are used to check the frequency differential between a VCO signal and an external reference or input signal. An adjustable threshold is provided to determine whether the frequencies of the two signals are considered to be in a frequency-locked mode. A pair of flip-flops is used to minimize any erroneous detection of frequency discrepancy by validating two consecutive results of the frequency differential check. In addition, a data present signal is used to control the transition between the phase-locked mode and the frequency-locked mode to minimize the potential data loss.
Abstract:
Various circuit techniques employ a transconductance (gm) cell in control loops to implement circuits such as phase locked loops and delay locked loops that are capable of operating at ultra high frequencies with improved precision and noise performance. The gm cell is designed to operate on an analog input signal with a very small swing and more gradual transition edges. These characteristics allow implementation of high frequency circuits and systems including, for example, transceivers for fiber optic channels, disk driver electronics and the like.
Abstract:
Provided is a low latency high bandwidth clock and data recovery (CDR) system. For example, there is a low latency high bandwidth CDR system including a demultiplexer configured to convert a high frequency input datastream to a low frequency output datastream according to a first latency and a phase error processor at least partially embedded into the demultiplexer and configured to determine a datastream phase error of the high frequency input datastream according to a second latency. The embedded phase error processor allows a portion of a total latency of the CDR system due to the demultiplexer and the phase error processor to be less than a sum of the first and second latencies.
Abstract:
A circuit for producing one of a plurality of output clock frequencies from a single, constant input reference clock frequency. The circuit comprises a reference clock system and a phase lock loop. The reference clock system includes a bypass path, a divider path including a first integer divider, and a multiplexer. A divisor of the first integer divider is based on a selected communications protocol of a group of possible communications protocols. The multiplexer is configured to route the bypass path or the divider path based on the selected communications protocol. The phase lock loop includes a voltage controlled oscillator and a feedback path. The feedback path includes a second integer divider. A divisor of the second integer divider is based on the selected communications protocol. The reference clock system is configured to receive a constant reference clock frequency. The voltage controlled oscillator is configured to produce one of a plurality of output clock frequencies corresponding to the selected communications protocol. The selected output clock frequency is produced based on at least one of the routing of the multiplexer, the divisor of the first integer divider, and the divisor of the second integer divider.
Abstract:
According to an example embodiment, a communications receiver may include a variable gain amplifier (VGA) configured to amplify received signals, a VGA controller configured to control the VGA, a plurality of analog to digital converter (ADC) circuits coupled to an output of the VGA, wherein the plurality of ADC circuits are operational when the communications receiver is configured to process signals of a first communications protocol, and wherein only a subset of the ADC circuits are operational when the communications receiver is configured to process signals of a second communications protocol.
Abstract:
An apparatus and method is disclosed to compensate for one or more offsets in a communications signal. A communications receiver may carry out an offset adjustment algorithm to compensate for the one or more offsets. An initial search procedure determines one or more signal metric maps for one or more selected offset adjustment corrections from the one or more offset adjustment corrections. The offset adjustment algorithm determines one or more optimal points for one or more selected offset adjustment correction based upon the one or more signal maps. The adaptive offset algorithm adjusts each of the one or more selected offset adjustment corrections to their respective optimal points and/or each of one or more non-selected offset adjustment corrections to a corresponding one of a plurality of possible offset corrections to provide one or more adjusted offset adjustment corrections. A tracking mode procedure optimizes the one or more adjusted offset adjustment corrections.
Abstract:
Embodiments for reference-less voltage controlled oscillator (VCO) calibration are provided. Embodiments include a VCO calibration module which uses one or more signals from a frequency detector to automatically select a proper VCO band and bring the VCO clock frequency close enough to the data rate. The VCO calibration module uses a calibration code to calibrate the VCO. In embodiments, the calibration code is determined using a frequency search scheme, which includes a discovery phase to determine the proper VCO band, and a binary search phase and a monitoring phase to select the calibration code that brings the VCO clock frequency closest to the data rate.
Abstract:
According to one general aspect, a distributed threshold adjuster (DTA) may be interspersed between stages of a multistage amplifier to adjust the DC voltage of an input signal. The DTA may include an input signal terminal configured to receive the input signal. The DTA may also include a plurality of current sources configured to produce an adjustment current signal whose amperage is configured to be increased or decreased by fixed steps in order to adjust the DC voltage of the input signal. The DTA may include a control unit configured to selectively turn on or off the individual current sources of the plurality of current sources to select the amperage of the adjustment current signal. The DTA may further include an output terminal configured to produce an output signal, comprising a combination of the input signal and the adjustment current signal, to a stage of a multistage amplifier.
Abstract:
An equalizer that compensates for non-linear effects resulting from a transmitter, a receiver, and/or a communication channel in a communication system. A non-linear decision feedback equalizer compensates for the non-linear effects impressed onto a received symbol by selecting between equalization coefficients based upon a previous received symbol. The received symbol may be represented in form of logic signals based on the binary number system. When the previous received symbol is a binary zero, the non-linear decision feedback equalizer selects an equalization coefficient corresponding to binary zero to compensate for the non-linear effects impressed onto the received symbol. When the previous received symbol is a binary one, the non-linear decision feedback equalizer selects an equalization coefficient corresponding to binary one to compensate for the non-linear effects impressed onto the received symbol.