Abstract:
A device, system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.
Abstract:
A technique to promote determinism among multiple clocking domains within a computer system or integrated circuit. In one embodiment, one or more execution units are placed in a deterministic state with respect to multiple clocks within a processor system having a number of different clocking domains.
Abstract:
Techniques to control power and processing among a plurality of asymmetric cores. In one embodiment, one or more asymmetric cores are power managed to migrate processes or threads among a plurality of cores according to the performance and power needs of the system.
Abstract:
A computer processor includes a decoder for decoding machine instructions and an execution unit for executing those instructions. The decoder and the execution unit are capable of decoding and executing vector instructions that include one or more format conversion indicators. For instance, the processor may be capable of executing a vector-load-convert-and-write (VLoadConWr) instruction that provides for loading data from memory to a vector register. The VLoadConWr instruction may include a format conversion indicator to indicate that the data from memory should be converted from a first format to a second format before the data is loaded into the vector register. Other embodiments are described and claimed.
Abstract:
A method and apparatus to execute data speculative instructions in a processor comprising at least one source register, each source register comprising a bit to indicate validity of data in the at least one source register. A data validity circuit coupled to the one or more source registers to determine the validity of the data in the source registers, and to indicate the validity of the data in a destination register based upon the validity bit in the at least one source register. The processor optionally comprising a checker unit to retire those instructions from the execution unit which write valid data to the destination register, and to re-schedules those instructions for execution which write invalid data to the destination register.
Abstract:
A processing core is described having execution unit logic circuitry having a first register to store a first vector input operand, a second register to a store a second vector input operand and a third register to store a packed data structure containing scalar input operands a, b, c. The execution unit logic circuitry further include a multiplier to perform the operation (a*(first vector input operand))+(b*(second vector operand))+c.
Abstract:
In one embodiment, the present invention includes a processor having multiple execution units, at least one of which includes a circuit having a multiply-accumulate (MAC) unit including multiple multipliers and adders, and to execute a user-level multiply-multiply-accumulate instruction to populate a destination storage with a plurality of elements each corresponding to an absolute value for a pixel of a pixel block. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a processor having multiple execution units, at least one of which includes a circuit having a multiply-accumulate (MAC) unit including multiple multipliers and adders, and to execute a user-level multiply-multiply-accumulate instruction to populate a destination storage with a plurality of elements each corresponding to an absolute value for a pixel of a pixel block. Other embodiments are described and claimed.
Abstract:
A method and apparatus for efficiently caching streaming and non-streaming data is described herein. Software, such as a compiler, identifies last use streaming instructions/operations that are the last instruction/operation to access streaming data for a number of instructions or an amount of time. As a result of performing an access to a cache line for a last use instruction/operation, the cache line is updated to a streaming data no longer needed (SDN) state. When control logic is to determine a cache line to be replaced, a modified Least Recently Used (LRU) algorithm is biased to select SDN state lines first to replace no longer needed streaming data.
Abstract:
A system and method for assigning values to elements in a first register, where each data field in a first register corresponds to a data element to be written into a second register, and where for each data field in the first register, a first value may indicate that the corresponding data element has not been written into the second register and a second value indicates that the corresponding data element has been written into the second register, reading the values of each of the data fields in the first register, and for each data field in the first register having the first value, gathering the corresponding data element and writing the corresponding data element into the second register, and changing the value of the data field in the first register from the first value to the second value. Other embodiments are described and claimed.