摘要:
The invention relates to a method to seal a cavity, comprising a hole (6), comprising: the deposition on at least part of the cover, or an electrically conductive material (4, 5), the conveyance of part of this material by electro-migration into the hole (6) to form a plug (20).
摘要:
A mechanical structure (100) comprises a moving mass (3) suspended by beams (4, 5, 6, 7) from a fixed frame (2). The structure (100) comprises elongation means (23-26) mechanically connected to each of the beams (4, 5, 6, 7). The elongation means is designed such that the stiffness of the beams (4, 5, 6, 7) varies only little during movement of the moving mass. The structure is characterized in that the response of an elongation means is asymmetric when acting in tension and in compression. The structure is thus made insensitive to accelerations along a direction parallel to the suspension direction.
摘要:
An integrated pressure sensitive transducer incorporating a pressure sensitive structure having a silicon substrate, and at least one monocrystalline silicon diaphragm deformable in a direction perpendicular to the substrate. The diaphragm, which is joined to the substrate at its periphery by means of an etched insulating layer, has a centered insulating stud which bears on the substrate in order to increase the rigidity of the diaphragm. Completing the transducer and for measuring the deformation of the diaphragm is at least one first electrode located in the substrate facing a high deformation region of the diaphragm and remote from the periphery of the diaphragm and the insulating stud, and at least one second electrode facing at least one low deformation region of the diaphragm and in the vicinity of the periphery and/or the insulating stud.
摘要:
A process for closure of at least one cavity intended to encapsulate or be part of a microelectronic device, comprising the following steps: a) Producing a cavity in a first substrate comprising a first layer traversed by an opening forming an access to the cavity; b) Producing a portion of bond material around the opening, on a surface of the first layer located on the side opposite the cavity; c) Producing, on a second substrate, a portion of fusible material, with a deposition of the fusible material on the second substrate and the use of a mask; d) Placing the portion of fusible material in contact with the portion of bond material; e) Forming a plug for the opening, which adheres to the portion of bond material, by melting and then solidification of the fusible material; f) Separating the plug and the second substrate.
摘要:
A micromachined electromechanical (MEMS) actuator including, for example, an electrostatically actuated electrical switch, is provided, including a first set of conducting plates forming part of the movable element of the switch, interdigitated with a set of conducting plates forming part of the substrate. The plates are, in principle, vertical relative to the surface of the substrate; they are in partial heightwise overlap and a control voltage applied between the two sets of plates exerts a vertical force acting so as to move the movable element closer to the substrate. The conducting plates of the movable element are connected to one another by conducting end crosspieces connecting the ends of these plates so as to surround, laterally, the stationary conducting plates. The distance separating one stationary plate end from the mobile crosspiece is the same at both ends so that the forces exerted in the elongation direction of the plates cancel out. This distance is preferably the same for all the plates.
摘要:
A fuel cell includes at least one stack the main elements whereof are perpendicular to a support substrate. This stack is provided with an electrolytic membrane situated between a first and second electrode. The first and second electrodes each include a catalytic layer in contact with the electrolytic membrane. Each electrode includes an electrically conductive porous diffusion layer, and each stack is inserted between electrically conductive first and second support partitions perpendicular to the support substrate and constituting current collectors of the stack. The support partitions are electrically insulated from one another.
摘要:
The invention provides a method of fabricating and electromechanical device having an active element on at least one substrate, the method having the steps of: a) making a heterogeneous substrate having a first portion, an interface layer, and a second portion, the first portion including one or more buried zones sandwiched between first and second regions formed in a first monocrystalline material, the first region extending to the surface of the first portion, and the second region extending to the interface layer, at least one said buried zone being made at least in part out of a second monocrystalline material so as to make it selectively attackable relative to the first and second regions; b) making openings from the surface of the first portion and through the first region, which openings open out to at least one said buried zone; and c) etching at least part of at least one buried zone to form at least one cavity so as to define at least one active element that is at least a portion of the second region between said cavity and said interface layer; wherein the first and second portions of the substrate are constituted respectively from first and second substrates that are assembled together by bonding, at least one of them including at least one said interface layer over at least a fraction of its surface.
摘要:
The invention relates to a method of fabricating an electromechanical structure presenting a first substrate (1) including at least one layer (1′) of monocrystalline material covered in a sacrificial layer (2) that presents a free surface, the structure presenting at least one mechanical reinforcing pillar received in said sacrificial layer, the method being characterized in that it comprises: a) making at least one well region (51, 52) in the sacrificial layer (2) by etching, at least in the entire thickness of the sacrificial layer (2), the well region defining at least one said mechanical pillar; b) depositing a first functionalization layer (4, 31) of a first material, relative to which the sacrificial layer is suitable for being etched selectively, the functionalization layer (4) filling at least one well region (51) at least partially and covering the free surface of the sacrificial layer (2) at least around the well region(s); and b′) depositing a filler layer (6, 32) of a second material different from the first material for terminating the filling of the well region(s) (5′), said filler layer (6) covering the first functionalization layer (4) at least in part around the well region(s) (5′), and planarizing the filler layer (6, 32), the pillar(s) being formed by the superposition of at least the first material and the second material in the well region(s); and releasing the electromechanical structure by removing at least partially the sacrificial layer (2). The invention also relates to an electromechanical structure obtained by the method.
摘要:
A microstructure including in a first layer insulated from a substrate by an insulator layer at least one sensitive element connected to at least one contact pad by an electrical connection and protected by a package cap. The sensitive element, the electrical connection, and the contact pad form an assembly delimited in the first layer by at least one trench, the assembly being covered by the package cap. The package cap includes at least one opening above the contact pad and is integral with the contact pad on the edges of the opening and with a zone located beyond the trench in relation to the assembly. Such a microstructure can find application in particular in microelectromechanical structures.
摘要:
This invention relates to the manufacture of a strain gauge sensor using the piezoresistive effect, comprising a structure (1) made of a monocrystalline material acting as support to at least one strain gauge (2) made of a semiconducting material with a freely chosen doping type. The strain gauge (2) is an element made along a crystallographic plane determined to improve its piezoresistivity coefficient. The structure (1) is a structure etched along a crystallographic plane determined to improve its etching. The strain gauge (2) is fixed to the structure (1) by bonding means capable of obtaining said sensor.