Abstract:
A gaseous reductant injection control system for exhaust aftertreatment is disclosed. In one embodiment, a selective catalytic reduction (SCR) catalyst is in fluid communication with an exhaust stream generated from an engine. An oxidation catalyst (OC) is upstream of the SCR catalyst and in fluid communication with the exhaust stream. A gaseous reductant injector is upstream of the SCR catalyst and downstream of the OC and in fluid communication with the exhaust stream. A first gas sensor is upstream of the OC and a second gas sensor is downstream of the SCR catalyst. A controller receives signals representative of gas concentrations detected in the exhaust stream by the first gas sensor and the second gas sensor, and estimates concentrations of nitric oxide (NO) and nitride dioxide (NO2) in the exhaust stream therefrom.
Abstract:
A system includes an aftertreatment system configured to treat emissions from an engine via a catalyst and a controller. The controller is configured to obtain one or more engine signals representative of operations of the engine and to execute a model to derive an estimated catalyst emission based on the one or more engine signals and on an expected catalyst degradation. The controller is further configured to obtain one or more catalyst signals representative of catalyst performance, and to generate an adaptation signal configured to improve accuracy of the model based on the one or more catalyst signals. The controller is also configured to apply the adaptation signal and the estimated catalyst emission to generate a urea injection control signal.
Abstract:
A system includes an exhaust treatment system configured to treat emissions from a combustion engine via a catalyst. The system includes a controller configured to obtain an operating parameter indicating catalyst performance. The controller is configured to determine a deterioration factor indicating deterioration of the catalyst based at least in part on the operating parameter. The controller is configured to determine an adaptation term configured to modify a reductant injection command for the combustion engine to account for the deterioration factor of the catalyst. The controller is configured to generate a signal indicating the adaptation term.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.
Abstract:
A system includes a controller programmed to determine an oxidation state of a three-way catalyst (TWC) assembly based on a first signal representative of a measured oxygen (O2) storage of the TWC assembly received from a radio frequency (RF) probe disposed within the TWC assembly, to determine whether a temperature of a fluid flowing into an ammonia slip catalyst (ASC) assembly is within a desired temperature operating range based on a second signal representative of the temperature of the fluid adjacent an inlet of the ASC assembly, to determine whether a concentration of nitrogen oxides (NOX) in the fluid exiting an outlet of the ASC assembly is within desired limits based on a third signal representative of the concentration of NOX in the fluid, and to determine whether to perform diagnostics on a component of an exhaust aftertreatment system based at least on the first, second, and third signals.
Abstract:
A system includes a controller configured to compare a nitrogen oxides (NOX) concentration within treated exhaust gases from a combustion engine after flowing through a first catalyst assembly and a second catalyst assembly relative to a NOX threshold value, to determine a change in O2 concentration within the treated exhaust gases between the first and second catalyst assemblies upstream of a location of oxidant injection into the treated exhaust gases, and to adjust an air-fuel ratio of the combustion engine based on the change in O2 concentration in the treated exhaust gases if the NOX concentration is greater than the NOX threshold value.
Abstract:
A system includes a controller that has a processor. The processor is configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement and a second signal from a second oxygen sensor indicative of a second oxygen measurement. The first oxygen sensor is disposed upstream of a catalytic converter system and the second oxygen sensor is disposed downstream of the catalytic converter system. The processor is also configured to derive a plurality of oxygen storage estimates based on the first signal, the second signal, and a catalytic converter model. Each of the plurality of oxygen storage estimates represents an oxygen storage estimate for a corresponding cell of a plurality of cells in the catalytic converter system. Further, the processor is configured to derive a system oxygen storage estimate for the catalytic converter system based on the plurality of oxygen storage estimates. The processor is also configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model. The processor is then configured to compare the system oxygen storage estimate to the system oxygen storage setpoint and apply the comparison during control of a gas engine.
Abstract:
A system includes an exhaust aftertreatment system configured to treat emissions from a combustion engine. The exhaust aftertreatment system includes a first catalyst assembly having an outlet. The exhaust aftertreatment system also includes an ammonia slip catalyst (ASC) assembly configured to receive a fluid from the first catalyst assembly and to convert ammonia (NH3) within the fluid into nitrogen (N2), wherein the ASC assembly has an inlet. The exhaust aftertreatment system further includes a silencer disposed between the outlet of the first catalyst assembly and the inlet of the ASC assembly, wherein the silencer is configured to receive the fluid and an oxidant for mixing with the fluid provide sufficient oxygen in the fluid flowing into the inlet of the ASC assembly to enable the catalytic activity in the ASC assembly that coverts NH3 into N2, and the silencer is configured to mix the fluid and the oxidant.
Abstract:
A gaseous reductant injection control system for exhaust aftertreatment is disclosed. In one embodiment, a selective catalytic reduction (SCR) catalyst is in fluid communication with an exhaust stream generated from an engine. An oxidation catalyst (OC) is upstream of the SCR catalyst and in fluid communication with the exhaust stream. A gaseous reductant injector is upstream of the SCR catalyst and downstream of the OC and in fluid communication with the exhaust stream. A first gas sensor is upstream of the OC and a second gas sensor is downstream of the SCR catalyst. A controller receives signals representative of gas concentrations detected in the exhaust stream by the first gas sensor and the second gas sensor, and estimates concentrations of nitric oxide (NO) and nitride dioxide (NO2) in the exhaust stream therefrom.
Abstract:
A system includes an aftertreatment system configured to treat emissions from an engine via a catalyst and a controller. The controller is configured to obtain one or more engine signals representative of operations of the engine and to execute a model to derive an estimated catalyst emission based on the one or more engine signals and on an expected catalyst degradation. The controller is further configured to obtain one or more catalyst signals representative of catalyst performance, and to generate an adaptation signal configured to improve accuracy of the model based on the one or more catalyst signals. The controller is also configured to apply the adaptation signal and the estimated catalyst emission to generate an engine control signal.