Abstract:
Obtaining a structure comprised of first and second layers of a first semiconductor materials and a strain relief buffer (SRB) layer between the first and second layers, forming a sidewall spacer on the sidewalls of an opening in the second layer, and forming a third semiconductor material in the opening, wherein the first, second and third semiconductor materials are different. A device includes first and second layers of first and second semiconductor materials and an SRB layer positioned above the first layer. The second layer is positioned above a first portion of the SRB layer, a region of a third semiconductor material is in an opening in the second layer and above a second portion of the SRB layer, and an insulating material is positioned between the region comprised of the third semiconductor material and the second layer.
Abstract:
The device disclosed herein includes, among other things, a substrate made of a first semiconductor material, at least one layer of insulating material positioned above the substrate, a fin structure positioned above the layer of insulating material and the substrate, the fin structure including first, second and third layers of semiconductor material, wherein the semiconductor materials of the first, second and third layers are different than the first semiconductor material, and a gate structure around a portion of the fin structure includes the first, second and third layers of semiconductor material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a liner semiconductor material within a trench, the liner material defining a transistor cavity, and forming spaced-apart source/drain placeholder structures that are at least partially positioned within the transistor cavity, the spaced-apart source/drain placeholder structures defining a gate cavity therebetween where a portion of the liner semiconductor material is exposed within the gate cavity. The method further includes forming a gate structure within the gate cavity and, after forming the gate structure, removing at least a portion of the source/drain placeholder structures to define a plurality of source/drain cavities within the transistor cavity on opposite sides of the gate structure, and forming a source/drain structure in each of the source drain cavities.
Abstract:
One illustrative method disclosed includes, among other things, forming a vertically oriented semiconductor structure above a doped well region defined in a semiconductor substrate, the semiconductor structure comprising a lower source/drain region and an upper source/drain region, wherein the lower source/drain region physically contacts the upper surface of the substrate, forming a counter-doped isolation region in the substrate, forming a metal silicide region in the substrate above the counter-doped isolation region, wherein the metal silicide region is in physical contact with the lower source/drain region, and forming a lower source/drain contact structure that is conductively coupled to the metal silicide region.
Abstract:
In one example, the method disclosed herein includes, among other things, forming a sacrificial structure around a plurality of stacked substantially un-doped nanowires at a location that corresponds to the channel region of the device, performing a selective etching process through a cavity to remove a second plurality of nanowires from the channel region and the source/drain regions of the device while leaving a first plurality of nanowires in position, and forming a metal conductive source/drain contact structure in each of the source/drain regions, wherein each of the metal conductive source/drain contact structures is positioned all around the first plurality of nanowires positioned in the source/drain regions.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of trenches that define a fin, performing a plurality of epitaxial deposition processes to form first, second and third layers of epi semiconductor material around an exposed portion of the fin, removing the first, second and third layers of epi semiconductor material from above an upper surface of the fin so as to thereby expose the fin, selectively removing the fin relative to the first, second and third layers of epi semiconductor material so as to thereby define two fin structures comprised of the first, second and third layers of epi semiconductor material, and forming a gate structure around a portion of at least one of the fin structures comprised of the first, second and third layers of epi semiconductor material.