Abstract:
One illustrative method disclosed herein includes, among other things, forming a first trench and a second trench in a layer of insulating material, the first trench having a first lateral critical dimension, the second trench having a second lateral critical dimension that is greater than the first lateral critical dimension of the first trench, forming a first conductive structure in the first trench, wherein a first bulk metal material constitutes a bulk portion of the first conductive structure, and forming a second conductive structure in the second trench, wherein a second bulk metal material constitutes a bulk portion of the second conductive structure and wherein the first bulk metal material and second bulk metal material are different materials.
Abstract:
A method of enhancing surface diffusion species concentration in source/drain regions includes providing a substrate for an integrated circuit. One of an n-type and a p-type S/D region for a semiconductor device is formed on a surface of the substrate. A top surface of the S/D region is exposed. A diffusion layer is deposited over the top surface of the S/D region, the diffusion layer having a concentration of a diffusion species. The diffusion layer is heated to diffuse the diffusion species into the S/D region to enhance a concentration of the diffusion species proximate the top surface of the S/D region. The diffusion layer is removed from the top surface of the S/D region. A metal layer is deposited over the top surface of the S/D region immediately after removing the diffusion layer. Electrical contacts are formed over the top surface of the S/D region from the metal layer.
Abstract:
A method can include forming a contact trench in a semiconductor structure so that the contact trench extends to a contact formation, the forming including using a hardmask layer, and filling the contact trench with a sacrificial material layer, the sacrificial material layer formed over the contact formation. A semiconductor structure can include a sacrificial material layer over a contact formation.
Abstract:
A device includes a first epi semiconductor material positioned in a source/drain region of the device, the first epi semiconductor material having a first lateral width at an upper surface thereof. An extended-height epi contact structure having an upper surface and first and second side surfaces is positioned on the first epi semiconductor material, the upper surface and the first and second side surfaces collectively defining a contact length of the extended-height epi contact structure that is greater than the first lateral width. A metal silicide region is positioned on the upper surface and the first and second side surfaces of the extended-height epi contact structure.
Abstract:
Integrated circuits with improved contact structures are provided. In an exemplary embodiment, an integrated circuit includes a semiconductor substrate disposed with a device therein and/or thereon. The integrated circuit includes a contact structure in electrical contact with the device. The contact structure includes a plug metal and a barrier layer, and the barrier layer is selected from fluorine-free tungsten (FFW), tungsten carbide, and tungsten nitride. The integrated circuit further includes a dielectric material overlying the semiconductor substrate. Also, the integrated circuit includes an interconnect formed within the dielectric material and in electrical contact with the contact structure.
Abstract:
Semiconductor structures with reduced gate and/or contact resistances and fabrication methods are provided. The method includes: providing a semiconductor device, which includes forming a transistor of the semiconductor device, where the transistor forming includes: forming a T-shaped gate for the transistor, the T-shaped gate being T-shaped in elevational cross-section; and forming an inverted-T-shaped contact to an active region of the transistor, the inverted-T-shaped contact including a conductive structure with an inverted T-shape in elevational cross-section.
Abstract:
Methods comprising forming a cobalt formation on an active feature of a semiconductor device, wherein the semiconductor device comprises an inactive feature above the cobalt formation; forming a cap on the cobalt formation; removing at least a portion of the inactive feature, wherein the cobalt formation is substantially not removed; forming a dielectric material above the cap; and forming a first contact to the cobalt formation. Systems configured to implement the methods. Semiconductor devices produced by the methods.
Abstract:
A method of fabricating a FinFET device includes a self-aligned contact etch where a source/drain contact module is performed prior to a replacement metal gate (RMG) module. In particular, the method involves forming a sacrificial gate over the channel region of a fin, and an interlayer dielectric over adjacent source/drain regions of the fin. An etch mask is then used to protect source/drain contact regions and enable the removal of the interlayer dielectric from outside of the protected area, e.g., between adjacent fins. A sacrificial cobalt layer is used to backfill the cavities formed by etching the interlayer dielectric prior to forming a functional gate.
Abstract:
A local interconnect structure includes a substrate having a dielectric layer and at least one semiconductor contact structure embedded in the dielectric layer. An electrically conductive material is deposited in a non-eroded contact trench that defines at least one electrically conducive contact via. The contact via extends from a first end that is flush with an upper surface of the dielectric layer to a second end that contacts the at one semiconductor contact structure. A local conductive material layer is formed in the dielectric layer and contacts the first end of the contact via. The non-eroded contact trench includes sharp upper corners formed at approximately ninety degrees with respect to the first end of the contact via.
Abstract:
Methods, apparatus, and systems for fabricating a semiconductor device comprising a semiconductor substrate; an oxide layer above the semiconductor substrate; a first metal component comprising tungsten disposed within the oxide layer; an interlayer dielectric (ILD) above the oxide layer, wherein the ILD comprises a trench and a bottom of the trench comprises at least a portion of the top of the first metal component; a barrier material disposed on sidewalls and the bottom of the trench; and a second metal component disposed in the trench.