Abstract:
A vehicle configured to operate in an autonomous mode may engage in a reverse-parallax analysis that includes a vehicle system detecting an object, capturing via a camera located at a first location a first image of the detected object, retrieving location data specifying (i) a location of a target object, (ii) the first location, and (iii) a direction of the camera, and based on the location data and the position of the detected object in the first image, predicting where in a second image captured from a second location the detected object would appear if the detected object is the target object.
Abstract:
Methods and systems for detection of a construction zone sign are described. A computing device, configured to control the vehicle, may be configured to receive, from an image-capture device coupled to the computing device, images of a vicinity of the road on which the vehicle is travelling. Also, the computing device may be configured to determine image portions in the images that may depict sides of the road at a predetermined height range. Further, the computing device may be configured to detect a construction zone sign in the image portions, and determine a type of the construction zone sign. Accordingly, the computing device may be configured to modify a control strategy associated with a driving behavior of the vehicle; and control the vehicle based on the modified control strategy.
Abstract:
Aspects of the disclosure relate to detecting and responding to objects in a vehicle's environment. For example, an object may be identified in a vehicle's environment, the object having a heading and location. A set of possible actions for the object may be generated using map information describing the vehicle's environment and the heading and location of the object. A set of possible future trajectories of the object may be generated based on the set of possible actions. A likelihood value of each trajectory of the set of possible future trajectories may be determined based on contextual information including a status of the detected object. A final future trajectory is determined based on the determined likelihood value for each trajectory of the set of possible future trajectories. The vehicle is then maneuvered in order to avoid the final future trajectory and the object.
Abstract:
An autonomous vehicle may determine to seek assistance navigating using a first trajectory. The autonomous vehicle may be configured to receive and store data about a plurality of obstacles. A particular obstacle in the plurality of obstacles may partially or wholly obstruct the first trajectory. The autonomous vehicle may select a portion of the stored data that includes data representing the particular obstacle. The selected portion of the stored data may be provided to an assistance center. A second trajectory may be received from the assistance center, where the second trajectory is not obstructed by the particular obstacle.
Abstract:
Disclosed herein are systems and methods for providing supplemental identification abilities to an autonomous vehicle system. The sensor unit of the vehicle may be configured to receive data indicating an environment of the vehicle, while the control system may be configured to operate the vehicle. The vehicle may also include a processing unit configured to analyze the data indicating the environment to determine at least one object having a detection confidence below a threshold. Based on the at least one object having a detection confidence below a threshold, the processor may communicate at least a subset of the data indicating the environment for further processing. The vehicle is also configured to receive an indication of an object confirmation of the subset of the data. Based on the object confirmation of the subset of the data, the processor may alter the control of the vehicle by the control system.
Abstract:
Example systems and methods allow for reporting and sharing of information reports relating to driving conditions within a fleet of autonomous vehicles. One example method includes receiving information reports relating to driving conditions from a plurality of autonomous vehicles within a fleet of autonomous vehicles. The method may also include receiving sensor data from a plurality of autonomous vehicles within the fleet of autonomous vehicles. The method may further include validating some of the information reports based at least in part on the sensor data. The method may additionally include combining validated information reports into a driving information map. The method may also include periodically filtering the driving information map to remove outdated information reports. The method may further include providing portions of the driving information map to autonomous vehicles within the fleet of autonomous vehicles.
Abstract:
Aspects of the present disclosure relate to a system having a memory, a plurality of self-driving systems for controlling a vehicle, and one or more processors. The processors are configured to receive at least one fallback task in association with a request for a primary task and at least one trigger of each fallback task. Each trigger is a set of conditions that, when satisfied, indicate when a vehicle requires attention for proper operation. The processors are also configured to send instructions to the self-driving systems to execute the primary task and receive status updates from the self-driving systems. The processors are configured to determine that a set of conditions of a trigger is satisfied based on the status updates and send further instructions based on the associated fallback task to the self-driving systems.
Abstract:
Disclosed are methods and devices for transitioning a mixed-mode autonomous vehicle from a human driven mode to an autonomously driven mode. Transitioning may include stopping a vehicle on a predefined landing strip and detecting a reference indicator. Based on the reference indicator, the vehicle may be able to know its exact position. Additionally, the vehicle may use the reference indictor to obtain an autonomous vehicle instruction via a URL. After the vehicle knows its precise location and has an autonomous vehicle instruction, it can operate in autonomous mode.
Abstract:
Example systems and methods enable an autonomous vehicle to request assistance from a remote operator in certain predetermined situations. One example method includes determining a representation of an environment of an autonomous vehicle based on sensor data of the environment. Based on the representation, the method may also include identifying a situation from a predetermined set of situations for which the autonomous vehicle will request remote assistance. The method may further include sending a request for assistance to a remote assistor, the request including the representation of the environment and the identified situation. The method may additionally include receiving a response from the remote assistor indicating an autonomous operation. The method may also include causing the autonomous vehicle to perform the autonomous operation.
Abstract:
Disclosed are methods and devices for transitioning a mixed-mode autonomous vehicle from a human driven mode to an autonomously driven mode. Transitioning may include stopping a vehicle on a predefined landing strip and detecting a reference indicator. Based on the reference indicator, the vehicle may be able to know its exact position. Additionally, the vehicle may use the reference indictor to obtain an autonomous vehicle instruction via a URL. After the vehicle knows its precise location and has an autonomous vehicle instruction, it can operate in autonomous mode.