Abstract:
A system of controlling an engine provided with a dual continuously variable valve duration device may include an engine, an intake valve for selectively supplying air or a mixture of the air and fuel to the combustion chamber, an ignition switch to ignite a burner to burn the mixture, and an exhaust valve disposed in the combustion chamber to selectively discharge exhaust gas in the combustion chamber to an outside of the combustion chamber, the dual continuously variable valve duration device provided to adjust an intake duration of the intake valve and an exhaust duration of the exhaust valve, a warm-up catalytic converter including a three-way catalyst for purifying hydrocarbons, carbon monoxide, nitrogen oxides contained in the exhaust gas downstream of the engine, and a controller for adjusting an ignition timing, the intake duration and the exhaust duration of the ignition switch based on a driving condition of a vehicle.
Abstract:
A continuous variable valve duration apparatus may include: a camshaft; a cam unit on which a cam is formed, and the camshaft inserted to the cam; an inner wheel for transmitting rotation of the camshaft to the cam unit; a wheel housing into which the inner wheel is rotatably inserted and movable perpendicular to the camshaft; a guide shaft on which a guide screw thread is formed and disposed perpendicular to the camshaft; a worm wheel formed with an inner screw thread for engaging with the guide screw thread, and the worm wheel disposed within the wheel housing; and a control shaft on which a control worm for engaging with the worm wheel is formed.
Abstract:
A method for controlling intake and exhaust valves of an engine may include: determining, by a controller, a target opening duration of the intake and exhaust valves according to a control region determined based on an engine load and an engine speed; modifying, by an intake continuous variable valve duration (CVVD) device and by an exhaust CVVD device, opening and closing timings of the intake valve and exhaust valve based on the target opening duration of the valves; and advancing or retarding, by the intake and/or exhaust CVVD devices, the opening timing of the intake and exhaust valves while simultaneously retarding or advancing the closing timing of the intake and exhaust valve by a predetermined value based on the target opening durations. In particular, the controller classifies five control regions based on the engine load and speed.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve in a first control region; maintaining the maximum duration of the intake valve and controlling a valve overlap by using exhaust valve closing (EVC) timing in a second control region; advancing intake valve closing (IVC) timing in a third control region; controlling the IVC timing to be close to bottom dead center (BDC) in a fourth control region; controlling a throttle valve to be fully opened and generating a scavenging phenomenon in a fifth control region; and controlling the throttle valve to be fully opened and controlling the IVC timing to prevent knocking in a sixth control region.
Abstract:
The present disclosure provides a system and a method for controlling valve timing of a continuous variable valve duration engine. The method may include: classifying a plurality of control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap between the intake valve and an exhaust valve in a first control region; maintaining the maximum duration of the intake valve and applying a maximum duration to the exhaust valve in a second control region; maintaining a manifold absolute pressure (MAP) at a predetermined pressure in a third control region; controlling a throttle valve to be fully opened and generating the valve overlap in a fourth control region; and controlling the throttle valve to be fully opened and controlling intake valve closing (IVC) timing according to the engine speed in a fifth control region.
Abstract:
A method for controlling valve timing of an engine includes: classifying control regions depending on an engine speed and an engine load, and applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; advancing an intake valve closing (IVC) timing and applying the maximum duration to the exhaust valve in the second control region; advancing both the IVC timing and an exhaust valve closing (EVC) timing in the third control region; fixing an exhaust valve opening (EVO) timing and approaching the EVC timing to a top dead center (TDC) in the fourth control region; controlling a wide open throttle valve (WOT) and retarding the EVO timing in the fifth control region; and controlling the WOT, advancing the EVO timing, and approaching the EVC timing to the TDC in the sixth control region.
Abstract:
A method for controlling valve timing is provided for an engine including continuous variable duration (CVVD) device disposed on both intake valve and exhaust valve sides respectively. The method may include: classifying control regions into first, second, third, fourth, and fifth control regions based on engine load and speed; applying a maximum duration to an intake valve and controlling a valve overlap in a first control region, applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a throttle valve to be fully opened, advancing an intake valve closing (IVC) timing, and controlling an exhaust valve closing (EVC) timing to after top dead center in the fourth control region; and controlling a wide open throttle valve (WOT) and retarding the intake valve closing in the fifth control region.
Abstract:
A method for controlling valve timing is provided for an engine including a continuous variable valve duration device disposed on an intake valve side, and a continuous variable valve duration device and continuous variable valve timing device disposed on an exhaust valve side. The method includes: classifying first, second, third, fourth, and fifth control regions depending on an engine speed and an engine load; applying a maximum duration to an intake valve and controlling a valve overlap in the first control region; applying the maximum duration to the intake valve and exhaust valve in the second control region; controlling a manifold absolute pressure (MAP) of an intake manifold to be maintained consistently in the third control region; controlling a wide open throttle valve (WOT) and retarding an exhaust valve opening (EVO) timing in the fourth control region; and controlling the WOT and retarding an intake valve closing (IVC) timing in the fifth control region.
Abstract:
A continuously variable valve lift apparatus may include a camshaft, a cam portion on which a cam is formed and to which the camshaft is inserted, a slider housing to which the cam portion is rotatably inserted and is movable with respect to the camshaft, a control portion selectively changing the position of the slider housing, an output portion rotatable around a pivot shaft and to which a valve shoe is formed. The valve shoe drives a valve unit.
Abstract:
A control method for exhaust gas recirculation of a hybrid electric vehicle includes detecting a pressure of an intake manifold. A difference between the pressure of the intake manifold and atmospheric pressure is determined. A load of an engine, which generates torque by combusting a fuel and external air supplied through the intake manifold, is determined. An opening rate of an exhaust gas recirculation valve is controlled to be a first value according to a rotational speed of the engine when the difference is smaller than or equal to a reference pressure and the load of the engine is smaller than or equal to a reference load.