Abstract:
A continuous variable valve duration apparatus may include a camshaft, a cam device on which a cam is formed, of which the camshaft is inserted thereto and of which a relative phase angle with respect to the camshaft is variable, an internal bracket transmitting rotation of the camshaft to the cam device, a wheel housing in which the internal bracket is rotatably inserted and on which a guide groove parallel to the camshaft is formed, a control portion including a control shaft disposed parallel to the camshaft and inserted into the guide groove, and the control portion selectively rotating the control shaft for the relative position of the wheel housing with respect to the camshaft to be changed and a slider housing interposed between the control shaft and the guide groove.
Abstract:
A method for controlling intake and exhaust valves of an engine includes: Controlling opening and closing timings of the intake and exhaust valves by an intake continuous variable valve timing (CVVT) device and an exhaust CVVT devices; determining, by a controller, target intake and exhaust opening durations of the intake and exhaust valves, and target opening and closing timings of the valves based on an engine load and an engine speed; modifying current intake and exhaust opening durations based on the target opening durations via an intake continuous variable valve duration (CVVD) device and an exhaust CVVD device; adjusting opening or closing timings of the valves to the target opening or closing timings of the valves while maintaining the modified opening durations of the valves.
Abstract:
The method for controlling valve timing of an engine includes: classifying control regions; applying a maximum duration to an intake valve and a long duration to an exhaust valve in a first control region; advancing Intake Valve Closing timing, applying the long duration to the exhaust valve, and maintaining a maximum valve overlap in a second control region; applying the long duration to the exhaust valve and advancing the IVC timing and Exhaust Valve Closing timing in a third control region; applying a short duration to the exhaust valve and controlling the EVC timing in a fourth control region; controlling a throttle valve, applying the short duration to the exhaust valve, and retarding Exhaust Valve Opening timing in a fifth control region; and controlling the throttle valve and the EVC timing, applying the long duration to the exhaust valve, advancing the EVO timing in a sixth control region.
Abstract:
A continuous variable valve duration apparatus may include: a camshaft; first and second cam portions on which a cam is formed respectively; first and second inner brackets transmitting rotation of the camshaft to the first and second cam portions respectively; a slider housing in which the first and the second inner brackets are rotatably inserted; first and second guiding portions formed on the slider housing; a control shaft parallel to the camshaft; a control rod eccentrically formed on the control shaft; a positioning protrusion connected to the control shaft; a guide head on which a head guiding portion and a head hole are formed; a cam cap supporting rotations of the first and the second cam portions and guiding movement of the slider housing, a control portion selectively rotating the control shaft; and a stopper unit limiting movement of the positioning protrusion.
Abstract:
A continuous variable valve duration apparatus may include: a camshaft; first and second cam portions on which a cam is formed respectively, the camshaft inserted to the first and second cam portions of which relative phase angles with respect to the camshaft are variable; first and second inner brackets transmitting rotation of the camshaft to the first and second cam portions respectively; a cam lifter in which the first and second inner brackets are rotatably inserted, and a cam lifter guide slantly formed on the cam lifter; a cam cap rotatably supporting the first and the second cam portions, and the cam lifter slidably mounted to the cam cap; a control portion including a screw shaft parallel to the camshaft; and an adapter engaged with the screw shaft, on which an adapter guide slidably engaged with the cam lifter guide and moving a relative position of the cam lifter.
Abstract:
A continuously variable valve duration apparatus may include a camshaft, a plurality of first cams and second cams of which a cam key is formed respectively thereto, and of which relative phase angles with respect to the camshaft are variable, a plurality of rotation rings mounted to the camshaft and of which a ring key is formed thereto respectively, a plurality of inner brackets transmitting rotation of the camshaft to the cam keys of the first cams and the seconds respectively, a plurality of slider housings of which each inner bracket is rotatable inserted therein, a support bracket connecting the slider housings and a control portion selectively moving the support bracket and moving positions of the slider housings so as to change rotation centers of the inner brackets.
Abstract:
A continuously variable valve duration apparatus may include a camshaft, a plurality of first cams and second cams of which a cam key is formed respectively thereto, and of which relative phase angles with respect to the camshaft are variable, a plurality of rotation rings mounted to the camshaft and of which a ring key is formed thereto respectively, a plurality of inner brackets transmitting rotation of the camshaft to the cam keys of the first cams and the seconds respectively, a plurality of slider housings of which each inner bracket is rotatable inserted therein and of which a control slot is formed thereto respectively, an eccentric control shaft inserted into the control slots and a control portion selectively rotating the eccentric control shaft to move positions of the slider housing and change positions of the inner brackets.
Abstract:
A continuously variable valve timing apparatus may include a camshaft, a first and a second cam portions having two cams formed thereto, of which the camshaft is inserted thereinto, and of which relative phase angles with respect to the camshaft are variable. First and second inner brackets transmit rotation of the camshaft to the first and second cam portions respectively. First and second slider housings having first and second inner brackets are rotatably inserted thereinto, respectively, and have relative positions with respect to the camshaft that are variable. A cam cap rotatably supports the first and second cam portions together with a cylinder head, and the slider housings are slidably mounted thereto. A control shaft is disposed parallel with the camshaft and selectively moves the first and the second slider housings, and a control portion selectively rotates the control shaft so as to change positions of the inner brackets.
Abstract:
A continuously variable valve timing apparatus may include a camshaft, a plurality of wheels mounted to the camshaft, of which a wheel key is formed thereto respectively, a plurality of cam portions of which a cam and a cam key are formed thereto respectively, of which the camshaft is inserted thereto, of which relative phase angle with respect to the camshaft is variable, a plurality of inner brackets connected with the each wheel key and the each cam key, a plurality of a slider housings of which the each inner bracket is rotatably inserted thereto respectively, and rotatably configured around a hinge hole formed an upper side of a cam cap and a control portion selectively moving the slider housings to change relative position of a rotation center of the inner brackets.
Abstract:
An exhaust heat recovery system may include an exhaust pipe through which exhaust gas exhausted from an engine moves, a main channel through which a working fluid absorbing thermal energy from the exhaust pipe moves, a turbine rotated by the working fluid exhausted from the main channel to generate energy, an exhaust gas recirculation (EGR) line circulating a portion of the exhaust gas exhausted from the engine to an intake manifold, and channel control valves disposed in the main channel and configured to control movement of the working fluid so that the exhaust gas moving along the EGR line and the working fluid moving along the main channel exchange heat with each other.