Abstract:
A method of forming a heterojunction bipolar transistor. The method includes providing a structure comprising at least an intrinsic base region and an emitter pedestal region. A stack is formed on the intrinsic base region. The stack comprises a polysilicon layer and a top sacrificial oxide layer. A trench is formed in the structure. The trench circumscribes the intrinsic base region and the stack. An extrinsic base is formed at two regions around the stack. The extrinsic base is formed by a selective epitaxial growth process to create a bridge over the trench. The bridge connects the two regions. An opening is provided in the stack. The opening exposes a portion of the intrinsic base region. An emitter is formed in the opening.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
Abstract:
A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
Abstract:
A method including forming a through-substrate via through a thickness of a substrate, the thickness of the substrate is measured from a front side of the substrate to a back side of the substrate, removing a first portion of the substrate to form an opening in the back side of the substrate such that a second portion of the substrate remains in direct contact surrounding a vertical sidewall of the through-substrate via, and filling the opening with an alternate material having a lower modulus of elasticity than the substrate.
Abstract:
A reference pixel sensor cell (e.g., global shutter) with hold node for leakage cancellation, methods of manufacture and design structure is provided. A pixel array includes one or more reference pixel sensor cells dispersed locally throughout active light sensing regions. The one or more reference pixel sensor cells provides a reference signal used to correct for photon generated leakage signals which vary by locality within the active light sensing regions.
Abstract:
At least one isolation trench formed in a layer stack including substrate, channel, and upper gate layers define a channel in the channel layer. Lateral etching from the isolation trench(es) can form lateral cavities in the substrate and upper gate layer to substantially simultaneously form self-aligned lower and upper gates. The lower gate undercuts the channel, the upper gate is narrower than the channel, and a source and a drain can be formed on opposed ends of the channel. As a result, source-drain capacitance and gate-drain capacitance can be reduced, increasing speed of the resulting FET.
Abstract:
Disclosed are devices and methods of forming the devices wherein pair(s) of first openings are formed through a dielectric layer and a first semiconductor layer into a substrate and, within the substrate, the first openings of each pair are expanded laterally and merged to form a corresponding trench. Dielectric material is deposited, filling the upper portions of the first openings and creating trench isolation region(s). A second semiconductor layer is deposited and second opening(s) are formed through the second semiconductor and dielectric layers, exposing monocrystalline portion(s) of the first semiconductor layer between the each pair of first openings. A third semiconductor layer is epitaxially deposited with a polycrystalline section on the second semiconductor layer and monocrystalline section(s) on the exposed monocrystalline portion(s) of the first semiconductor layer. A crystallization anneal is performed and a device (e.g., a bipolar device) is formed incorporating the resulting monocrystalline second and third semiconductor layers.
Abstract:
Manufacturing a semiconductor structure including: forming a seed material on a sidewall of a mandrel; forming a graphene field effect transistor (FET) on the seed material; and removing the seed material.
Abstract:
Switchable and/or tunable filters, methods of manufacture and design structures are disclosed herein. The method of forming the filters includes forming at least one piezoelectric filter structure comprising a plurality of electrodes formed to be in contact with at least one piezoelectric substrate. The method further includes forming a micro-electro-mechanical structure (MEMS) comprising a MEMS beam in which, upon actuation, the MEMS beam will turn on the at least one piezoelectric filter structure by interleaving electrodes in contact with the piezoelectric substrate or sandwiching the at least one piezoelectric substrate between the electrodes.
Abstract:
An advanced contact module for optimizing emitter and contact resistance and methods of manufacture are disclosed. The method includes forming a first contact via to a first portion of a first device. The method further includes filling the first contact via with metal material to form a first metal contact to the first portion of the first device. The method further includes forming additional contact vias to other portions of the first device and contacts of a second device. The method further includes cleaning the additional contact vias while protecting the first metal contact of the first portion of the first device. The method further includes filling the additional contact vias with metal material to form additional metal contacts to the other portions of the first device and the second device.