摘要:
A method of manufacturing a memory cell array in which first conductive layers (2) and second conductive layers (14) extend above a semiconductor substrate (1) and three-dimensionally cross with each other, and memory cells each of which includes a current steering element (10) and a variable resistance element (23) electrically connected in series to each other is provided at a corresponding one of three-dimensional cross points between the first conductive layers (2) and the second conductive layers (14). The method includes: forming a first interlayer insulating film (3); forming a contact hole in the interlayer insulating film (3); depositing a first plug material (4) in the contact hole and on the first interlayer insulating film (3); performing a first polishing in which the first plug material (4) is polished until the first interlayer insulating film (3) is exposed; depositing a conductive film (6a) that becomes a first electrode (6) of the current steering element (10), on the first plug material (4) and the first interlayer insulating film (3) after the first polishing; and performing a second polishing in which a surface of the conductive film (6a) is polished.
摘要:
A method of manufacturing a memory cell array in which first conductive layers (2) and second conductive layers (14) extend above a semiconductor substrate (1) and three-dimensionally cross with each other, and memory cells each of which includes a current steering element (10) and a variable resistance element (23) electrically connected in series to each other is provided at a corresponding one of three-dimensional cross points between the first conductive layers (2) and the second conductive layers (14). The method includes: forming a first interlayer insulating film (3); forming a contact hole in the interlayer insulating film (3); depositing a first plug material (4) in the contact hole and on the first interlayer insulating film (3); performing a first polishing in which the first plug material (4) is polished until the first interlayer insulating film (3) is exposed; depositing a conductive film (6a) that becomes a first electrode (6) of the current steering element (10), on the first plug material (4) and the first interlayer insulating film (3) after the first polishing; and performing a second polishing in which a surface of the conductive film (6a) is polished.
摘要:
In a method of manufacturing a semiconductor device where at least one insulating layer structure having a metal wiring constitution is formed to thereby construct a multi-layered wiring arrangement, a first SiOCH layer is produced. Then, a surface section of the first SiOCH layer is treated to change the surface section of the first SiOCH layer to a second SiOCH layer which features a carbon (C) density lower than that of the first SiOCH layer, a hydrogen (H) density lower than that of the first SiOCH layer and an oxygen (O) density higher than that of the first SiOCH layer. Finally, a silicon dioxide (SiO2) layer is formed on the second SiOCH layer.
摘要:
In a current rectifying element (10), a barrier height φA of a center region (14) of a barrier layer (11) in a thickness direction thereof sandwiched between a first electrode layer (12) and a second electrode layer (13) is formed to be larger than a barrier height φB of a region in the vicinity of an interface (17) between the barrier layer (11) and the first electrode layer (12) and an interface (17) between the barrier layer (11) and the second electrode layer (13). The barrier layer (11) has, for example, a triple-layer structure of barrier layers (11a), (11b) and (11c). The barrier layers (11a), (11b) and (11c) are, for example, formed by SiN layers of SiNx2, SiNx1, and SiNx1 (X1
摘要:
A lower electrode (22) is provided on a semiconductor chip substrate (26). A lower electrode (22) is covered with a first interlayer insulating layer (27) from above. A first contact hole (28) is provided on the lower electrode (22) to penetrate through the first interlayer insulating layer (27). A low-resistance layer (29) forming the resistance variable layer (24) is embedded to fill the first contact hole (28). A high-resistance layer (30) is provided on the first interlayer insulating layer (27) and the low-resistance layer (29). The resistance variable layer (24) is formed by a multi-layer resistance layer including a single layer of the high-resistance layer (30) and a single layer of the low-resistance layer (29). The low-resistance layer (29) forming the memory portion (25) is isolated from at least its adjacent memory portion (25).
摘要:
A multilevel interconnect structure in a semiconductor device comprises a first insulating layer (2) formed on a semiconductor wafer (1), a Cu interconnect layer (4) formed on the first insulating layer (2), a second insulating layer (6) formed on the Cu interconnect layer (4), and a metal oxide layer (5) formed at an interface between the Cu interconnect layer (4) and the second insulating layer (6). The metal oxide layer (5) is formed by immersion-plating a metal, such as Sn or Zn, on the Cu interconnect layer (4) and then heat-treating the plated layer in an oxidizing atmosphere.
摘要:
A semiconductor device having interconnects is reduced in leakage current between the interconnects and improved in the TDDB characteristic. It includes an insulating interlayer 108, and interconnects 160 filled in grooves formed in the insulating interlayer, including a copper layer 124 mainly composed of copper, having the thickness smaller than the depth of the grooves, and a low-expansion metal layer 140, which is a metal layer having a heat expansion coefficient smaller than that of the copper layer, formed on the copper layer.
摘要:
An electrochemical processing apparatus is provided, in which a substrate and an anode placed in a chamber are partitioned into a cathode region including the substrate and an anode region including the anode by placing a multi-layered structure of a filtration film and a cation exchange film so that the filtration film is positioned on the substrate side. A plating solution containing additives is introduced into the cathode region, whereby a substrate is plated.
摘要:
A method of making a top electrode for a thin film capacitor with a multi-layer structure that includes a high dielectric oxide layer, a first conductive layer on the high dielectric oxide layer and having a high formability to a reactive ion etching, and a second conductive layer on the first conductive layer, the second conductive layer having a high formability to the reactive ion etching. The first conductive layer is deposited with a lower deposition rate than the second conductive layer wherein an interface between the first conductive layer and the high dielectric oxide layer is such that a density of a leak current across the interface is suppressed at not higher than 1×10−8 A/cm2 upon applying a voltage of 2V across the dielectric oxide layer after the multi-layer structure has been subjected to a heat treatment at 350° C.
摘要:
A liquid precursor for forming a thin film of ferroelectric metal oxide in an integrated circuit contains metal oxides in excess of the stoichiometrically balanced amount. When the precursor comprises strontium, bismuth, tantalum and niobium for forming strontium bismuth tantalum niobate, the precursor contains excess amounts of at least one of tantalum and niobium. Capacitors containing thin films of layered superlattice material made from a precursor containing excess tantalum and niobium show good polarizability and low percentage imprint after 1010 negative polarization switching pulses at 75° C., and after 109 negative polarization switching pulses at 125° C.