摘要:
A reactor for electrochemically processing at least one surface of a microelectronic workpiece is set forth. The reactor comprises a reactor head including a workpiece support that has one or more electrical contacts positioned to make electrical contact with the microelectronic workpiece. The reactor also includes a processing container having a plurality of nozzles angularly disposed in a sidewall of a principal fluid flow chamber at a level within the principal fluid flow chamber below a surface of a bath of processing fluid normally contained therein during electrochemical processing. A plurality of anodes are disposed at different elevations in the principal fluid flow chamber so as to place them at difference distances from a microelectronic workpiece under process without an intermediate diffuser between the plurality of anodes and the microelectronic workpiece under process. One or more of the plurality of anodes may be in close proximity to the workpiece under process. Still further, one or more of the plurality of anodes may be a virtual anode. The present invention also related to multi-level anode configurations within a principal fluid flow chamber and methods of using the same.
摘要:
Reactors with agitators and methods for processing microfeature workpieces with such reactors. The agitators are capable of obtaining high, controlled mass-transfer rates that result in high quality surfaces and efficient wet chemical processes. The agitators generate high flow velocities in the fluid and contain the high energy fluid proximate to the surface of the workpiece to form high quality surfaces when cleaning, etching and/or depositing materials to/from a workpiece. The agitators also have short stroke lengths so that the footprints of the reactors are relatively small. As a result, the reactors are efficient and cost effective to operate. The agitators are also designed so that electrical fields in the processing solution can effectively operate at the surface of the workpiece.
摘要:
A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.
摘要:
A process for metallization of a workpiece, such as a semiconductor workpiece. In an embodiment, an alkaline electrolytic copper bath is used to electroplate copper onto a seed layer, electroplate copper directly onto a barrier layer material, or enhance an ultra-thin copper seed layer which has been deposited on the barrier layer using a deposition process such as PVD. The resulting copper layer provides an excellent conformal copper coating that fills trenches, vias, and other microstructures in the workpiece. When used for seed layer enhancement, the resulting copper seed layer provide an excellent conformal copper coating that allows the microstructures to be filled with a copper layer having good uniformity using electrochemical deposition techniques. Further, copper layers that are electroplated in the disclosed manner exhibit low sheet resistance and are readily annealed at low temperatures.
摘要:
A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters. In some embodiments, the facility analyzes a profile of the seed layer applied to a workpiece, and determines and communicates to a material deposition tool a set of control parameters designed to deposit material on the workpiece in a manner that compensates for deficiencies in the seed layer.
摘要:
A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters. In some embodiments, the facility analyzes a profile of the seed layer applied to a workpiece, and determines and communicates to a material deposition tool a set of control parameters designed to deposit material on the workpiece in a manner that compensates for deficiencies in the seed layer.
摘要:
A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a mathematical model of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the mathematical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters. In some embodiments, the facility analyzes a profile of the seed layer applied to a workpiece, and determines and communicates to a material deposition tool a set of control parameters designed to deposit material on the workpiece in a manner that compensates for deficiencies in the seed layer.
摘要:
Paddles and enclosures for processing microfeature workpieces are disclosed. A paddle device having multiple paddles is positioned in an enclosure to reciprocate back and forth along a generally linear path. The clearances between the paddles, the workpiece and the walls of the chamber are relatively small to increase the flow agitation at the surface of the workpiece and enhance the mass transfer process occurring there. The paddles are shaped to reduce or eliminate electrical shadowing effects created at the surface of the workpiece during electrochemical processing. Paddles on the same paddle device may have different shapes to reduce the likelihood for creating three-dimensional effects in the flow field proximate to the surface of the workpiece. The reciprocation stroke of the paddles may shift to further reduce shadowing.
摘要:
A method and system for electrolytically processing a microelectronic workpiece. In one embodiment, the method includes contacting the workpiece with an electrolytic fluid, positioning one or more electrodes in electrical communication with the workpiece, directing an electrical current through the electrolytic fluid from the electrodes to the workpiece or vice versa, and actively changing a distribution of the current at the workpiece during the process. For example, the current can be changed such that a current ratio of at least one electrical current to the sum of the electrical currents shifts from a first current ratio value to a second current ratio value. Accordingly, the current applied to the workpiece can be adjusted to achieve a target shape for a conductive layer on the workpiece, or to account for temporally and/or spatially varying characteristics of the electrolytic process.
摘要:
A facility for selecting and refining electrical parameters for processing a microelectronic workpiece in a processing chamber is described. The facility initially configures the electrical parameters in accordance with either a numerical of the processing chamber or experimental data derived from operating the actual processing chamber. After a workpiece is processed with the initial parameter configuration, the results are measured and a sensitivity matrix based upon the numerical model of the processing chamber is used to select new parameters that correct for any deficiencies measured in the processing of the first workpiece. These parameters are then used in processing a second workpiece, which may be similarly measured, and the results used to further refine the parameters.