Abstract:
A semiconductor structure and a method for manufacturing the same are disclosed. The semiconductor structure includes a substrate, a first conductive structure, a second conductive structure, a dielectric structure, a dielectric layer, a first conductive plug, and a second conductive plug. The first conductive plug passes through only an upper dielectric portion of the dielectric structure, the dielectric layer and a lower dielectric portion of the dielectric structure to physically and electrically contact with the first conductive structure. The second conductive plug passes through the upper dielectric portion, the dielectric layer and the lower dielectric portion to physically and electrically contact with the second conductive structure.
Abstract:
A three-dimensional (3D) stacked semiconductor structure is provided. A substrate having an array area and a peripheral area is provided, and several patterned multi-layered stacks above the substrate are formed in the array area. The patterned multi-layered stacks are spaced apart from each other, and channel holes are formed between the patterned multi-layered stacks disposed adjacently. A charge trapping layer is formed on the patterned multi-layered stacks and deposited in the channel holes as liners. A polysilicon channel layer is deposited along the charge trapping layer, and conductive pads are formed on the polysilicon channel layer and respectively corresponding to the patterned multi-layered stacks. The polysilicon channel layer has a first thickness (t1), one of the conductive pads has a second thickness (t2), wherein the second thickness (t2) is larger than the first thickness (t1).
Abstract:
A three-dimensional semiconductor device is provided, comprising: a plurality of ground selection line (GSL) sections separately formed on a substrate, the GSL sections being electrically insulated from each other and extended in parallel to each other, and the GSL sections extending along a first direction; a plurality of stacked structures vertically formed on the GSL sections on the substrate, and each stacked structure comprising alternated semiconductor layers and insulating layers; string selection lines (SSLs) separately formed on the stacked structures, and the string selection lines extending along the first direction; and bit lines disposed above the SSLs and extending along a second direction, the bit lines arranged parallel to each other and in perpendicular to the SSLs and GSL sections, wherein a plurality of memory cells of memory layers respectively defined by the stacked structures, the SSLs, the GSL sections and the bit lines correspondingly.
Abstract:
A semiconductor device includes active strips. Active strip stack selection structures electrically couple to the active strip stacks at positions between the first and second ends, and select particular ones of the active strip stacks for operations. In one embodiment, different pads coupled to opposite pads have a higher voltage, depending on the memory cell selected for read. The same active strip stack selection structure can act as a pair of side gates for opposite sides of a first active strip stack, and as one side gate for each of the adjacent active strip stacks. Each active strip stack can have: a first structure from a first set acting as first and second side gates on a first side of word lines; and a second structure and a third structure from a second set respectively acting as third and fourth side gates on the second side of word lines.
Abstract:
A semiconductor structure and a method for forming the same are provided. The semiconductor structure includes a substrate, a stacked structure, a dielectric layer, a conductive structure, a dielectric structure and a conductive plug. The stacked structure includes dielectric films and conductive films arranged alternately. The dielectric layer is between the conductive structure and a sidewall of the stacked structure. The dielectric structure is on the stacked structure and defining a through via. The conductive plug fills the through via and physically contacts one of the conductive films exposed by the through via and adjoined with the dielectric layer.
Abstract:
A semiconductor structure and a method for manufacturing the same are disclosed. The semiconductor structure includes a substrate, a first conductive structure, a second conductive structure, a dielectric structure, a dielectric layer, a first conductive plug, and a second conductive plug. The first conductive plug passes through only an upper dielectric portion of the dielectric structure, the dielectric layer and a lower dielectric portion of the dielectric structure to physically and electrically contact with the first conductive structure. The second conductive plug passes through the upper dielectric portion, the dielectric layer and the lower dielectric portion to physically and electrically contact with the second conductive structure.
Abstract:
A method of forming a three-dimensional memory is provided. A stacked structure is patterned to form a comb structure including a bit line pad extending along a first direction and comb-teeth portions extending along a second direction. A charge storage layer is formed on top and sidewall of the comb structure. Bit lines and auxiliary gates are formed on the charge storage layer and extend along the first direction. Each bit line covers top and sidewall of partial comb-teeth portions. Auxiliary gates cover top and sidewall of edge regions of the bit line pad. The charge storage layer on top of the bit line pad is removed. The stacked structure of the bit line pad is patterned to form a stepped structure. An ion implantation is performed to the stepped structure, to form a doped region in the semiconductor layer below each step surface of the stepped structure.
Abstract:
A semiconductor device includes active strips. Active strip stack selection structures electrically couple to the active strip stacks at positions between the first and second ends, and select particular ones of the active strip stacks for operations. In one embodiment, different pads coupled to opposite pads have a higher voltage, depending on the memory cell selected for read. The same active strip stack selection structure can act as a pair of side gates for opposite sides of a first active strip stack, and as one side gate for each of the adjacent active strip stacks. Each active strip stack can have: a first structure from a first set acting as first and second side gates on a first side of word lines; and a second structure and a third structure from a second set respectively acting as third and fourth side gates on the second side of word lines.
Abstract:
A method for manufacturing a memory device includes providing a substrate having a plurality of active layers, forming a plurality of holes through the plurality of active layers including a first row of holes and a second row of holes, and filling the plurality of holes with an isolation material. The method includes etching the plurality of active layers to form first and second sets of interdigitated stacks of active strips, where the first set includes strips extending from pads in a first stack of pads and terminating at isolation strips remaining from corresponding filled holes in the first row, and the second set includes strips extending from pads in a second stack of pads and terminating at isolation strips remaining from corresponding filled holes in the second row.
Abstract:
A semiconductor structure and a manufacturing method for the same are provided. The method comprises following steps. A first gate structure is formed on a substrate in a first region. A protecting layer is formed covering the first gate structure. A second gate structure is formed on the substrate in second region exposed by the protecting layer and adjacent to the first region.