Abstract:
A torsional actuator formed of a yarn of twisted shape memory material. The yarn has multiple strands of homogeneous shape memory material that have been homochirally twisted. For torsional actuation, a fractional portion of the yarn is heated such as by Joule heating. Various Joule heating mechanisms include passing an electrical current through an unwound segment of the yarn, or by coating a fractional portion of the length of each homogeneous strand with a coating material of higher electrical conductivity than the electrical conductivity of the shape memory material an passing current through the length of the yarn. The shape memory material may be a shape memory alloy such as a NiTi alloy.
Abstract:
A bending actuator and methods for making and using the same. A beam of anisotropic polymer material, such as nylon, characterized by a greater degree of molecular orientation along a longitudinal axis than transverse to the longitudinal axis, has a heating element in thermal contact with at least one of a pair of opposing faces parallel to the longitudinal axis of the beam. The heating element in certain embodiments provides for photothermal activation of the bending actuator.
Abstract:
Embodiments described herein generally relate to compositions including discrete nanostructures (e.g., nanostructures including a functionalized graphene layer and a core species bound to the functionalized graphene layer), and related articles and methods. A composition may have a coefficient of friction of less than or equal to 0.02. Discrete nanostructures may have a substantially non-planar configuration. A core species may reversibly covalently bind a first portion of a functionalized graphene layer to a second portion of the functionalized graphene layer. Articles, e.g., articles including a plurality of discrete nanostructures and a means for depositing the plurality of discrete nanostructures on a surface, are also provided. Methods (e.g., methods of forming a layer) are also provided, including depositing a composition onto a substrate surface and/or applying a mechanical force to the composition, e.g., such that the composition exhibits a coefficient of friction of less than or equal to 0.02.
Abstract:
A miniature, low cost mass spectrometer capable of unit resolution over a mass range of 10 to 50 AMU. The mass spectrometer incorporates several features that enhance the performance of the design over comparable instruments. An efficient ion source enables relatively low power consumption without sacrificing measurement resolution. Variable geometry mechanical filters allow for variable resolution. An onboard ion pump removes the need for an external pumping source. A magnet and magnetic yoke produce magnetic field regions with different flux densities to run the ion pump and a magnetic sector mass analyzer. An onboard digital controller and power conversion circuit inside the vacuum chamber allows a large degree of flexibility over the operation of the mass spectrometer while eliminating the need for high-voltage electrical feedthroughs. The miniature mass spectrometer senses fractions of a percentage of inlet gas and returns mass spectra data to a computer.
Abstract:
Antenna including a wire made of a conducting polymer. The wire is sewn into fabric material in a selected pattern. A preferred conducing polymer is polypyrrole. It is also preferred that the wire be encased in a non-conductive, low dielectric plastic.
Abstract:
A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe. In some embodiments, the actuator includes a Lorentz force linear actuator. The mechanical property may be determined using non-linear stochastic system identification. The mechanical property may be indicative of, for example, tissue compliance and tissue elasticity. The device can further include a handle for manual application of the probe to the surface of the tissue and may include an accelerometer detecting an orientation of the probe. The device can be used to test skin tissue of an animal, plant tissue, such as fruit and vegetables, or any other biological tissue.
Abstract:
Electrochemical redox supercapacitor. The supercapacitor includes two thin films of electrically conducting polymer separated by an ion-permeable membrane and including an electrolyte disposed between the two thin films. Electrical contacts are disposed on outer surfaces of the two thin films. The supercapacitor is flexible and may be rolled, folded on itself, or kept substantially flat. A suitable conducting polymer is polypyrrole. In another aspect, the invention is a method for making a redox supercapacitor.
Abstract:
A method and apparatus for detecting and removing air from a syringe containing a volume of liquid and a volume of gas is described. The method includes moving a piston in the syringe to expel gas through an orifice of the syringe, sensing a movement of the piston in the syringe, and determining when the volume of gas is expelled from the syringe based on a change in the sensed movement. Moving the piston may include applying oscillating force to the piston using an electromagnetic actuator, and displacement and speed of the piston during each oscillation may be sensed. Determining when the volume of gas is expelled may be based on a change in the sensed movement of the piston during one or more oscillations of the piston or based on a comparison to a given reference value.
Abstract:
A device for measuring a mechanical property of a tissue includes a probe configured to perturb the tissue with movement relative to a surface of the tissue, an actuator coupled to the probe to move the probe, a detector configured to measure a response of the tissue to the perturbation, and a controller coupled to the actuator and the detector. The controller drives the actuator using a stochastic sequence and determines the mechanical property of the tissue using the measured response received from the detector. The probe can be coupled to the tissue surface. The device can include a reference surface configured to contact the tissue surface. The probe may include a set of interchangeable heads, the set including a head for lateral movement of the probe and a head for perpendicular movement of the probe. The perturbation can include extension of the tissue with the probe or sliding the probe across the tissue surface and may also include indentation of the tissue with the probe. In some embodiments, the actuator includes a Lorentz force linear actuator. The mechanical property may be determined using non-linear stochastic system identification. The mechanical property may be indicative of, for example, tissue compliance and tissue elasticity. The device can further include a handle for manual application of the probe to the surface of the tissue and may include an accelerometer detecting an orientation of the probe. The device can be used to test skin tissue of an animal, plant tissue, such as fruit and vegetables, or any other biological tissue.
Abstract:
Antenna including a wire made of a conducting polymer. The wire is sewn into fabric material in a selected pattern. A preferred conducing polymer is polypyrrole. It is also preferred that the wire be encased in a non-conductive, low dielectric plastic.