Abstract:
There is provided a large-diameter Group-III element nitride semiconductor substrate including a first surface and a second surface, in which, despite its large diameter, variations in quality in the first surface are suppressed. A Group-III element nitride semiconductor includes: a first surface; and a second surface, wherein the Group-III element nitride semiconductor substrate has a diameter of 100 mm or more, and wherein the Group-III element nitride semiconductor substrate has a coefficient of variation of a yellow luminescence intensity in a range corresponding to 88% or more of an entire region of the first surface of 0.3 or less based on a photoluminescence spectrum obtained through photoluminescence measurement of a range of the entire region of the first surface.
Abstract:
It is provided a layer of a nitride of a group 13 element having a first main face and second main face. The layer of the nitride of the group 13 element includes a first void-depleted layer provided on the side of the first main face, a second void-depleted layer provided on the side of the second main face, and the void-distributed layer provided between the first void-depleted layer and second void-depleted layer.
Abstract:
A free-standing substrate of a polycrystalline nitride of a group 13 element is composed of a plurality of monocrystalline particles having a particular crystal orientations in approximately a normal direction. The free-standing substrate has a top surface and a bottom surface. The polycrystalline nitride of the group 13 element is gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof and contains zinc at a concentration of 1×1017 atoms/cm3 or more and 1×1020 atoms/cm3 or less.
Abstract:
A free-standing substrate of a polycrystalline nitride of a group 13 element contains a plurality of monocrystalline particles having a particular crystal orientation in approximately a normal direction. The polycrystalline nitride of the group 13 element is composed of gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof. The free-standing substrate has a top surface and bottom surface. The free-standing substrate contains at least one of zinc and calcium. A root mean square roughness Rms at the top surface is 3.0 nm or less.
Abstract:
Provided is a self-supporting gallium nitride substrate useful as an alternative material for a gallium nitride single crystal substrate, which is inexpensive and also suitable for having a large area. This substrate is composed of a plate composed of gallium nitride-based single crystal grains, wherein the plate has a single crystal structure in the approximately normal direction. This substrate can be manufactured by a method comprising providing an oriented polycrystalline sintered body; forming a seed crystal layer composed of gallium nitride on the sintered body so that the seed crystal layer has crystal orientation mostly in conformity with the crystal orientation of the sintered body; forming a layer with a thickness of 20 μm or greater composed of gallium nitride-based crystals on the seed crystal layer so that the layer has crystal orientation mostly in conformity with crystal orientation of the seed crystal layer; and removing the sintered body.
Abstract:
Disclosed is a photovoltaic device comprising a substrate composed of an oriented polycrystalline zinc oxide sintered body in a plate shape, a photovoltaic layer provided on the substrate, and an electrode provided on the photovoltaic layer. According to the present invention, a photovoltaic device having high photoelectric conversion efficiency can be inexpensively provided.
Abstract:
The present invention provides a zinc oxide powder that enables a high degree of orientation, and highly uniform dispersion of an additive substance, to be simultaneously achieved in a green body or a sintered body. The zinc oxide powder of the present invention comprises a plurality of plate-like zinc oxide particles and has a volume-based D50 average particle diameter of 1 to 5 μm and a specific surface area of 1 to 5 m2/g. The zinc oxide powder has a degree of orientation of the (002) plane of 40% or greater when two-dimensionally arrayed into a monolayer on a substrate.
Abstract:
To grow a gallium nitride crystal, a seed-crystal substrate is first immersed in a melt mixture containing gallium and sodium. Then, a gallium nitride crystal is grown on the seed-crystal substrate under heating the melt mixture in a pressurized atmosphere containing nitrogen gas and not containing oxygen. At this time, the gallium nitride crystal is grown on the seed-crystal substrate under a first stirring condition of stirring the melt mixture, the first stirring condition being set for providing a rough growth surface, and the gallium nitride crystal is subsequently grown on the seed-crystal substrate under a second stirring condition of stirring the melt mixture, the second stirring condition being set for providing a smooth growth surface.