摘要:
An oriented ceramic sintered body production method includes (a) a step of preparing a ceramic compact before firing into an oriented ceramic sintered body; and (b) a step of obtaining an oriented ceramic sintered body by sandwiching the ceramic compact between a pair of releasing sheets, placing the ceramic compact and the releasing sheets in a hot press firing furnace, and hot press firing the ceramic compact while applying a pressure by a pair of punches through the pair of releasing sheets, wherein each of the releasing sheets is a releasing sheet such that, after the releasing sheet is sandwiched between PET films, is then placed and vacuum-packed on a stainless steel sheet, and is isostatically pressed at 200 kg/cm2, a surface of the releasing sheet on the side opposite from the stainless steel sheet has a profile curve with a maximum profile height Pt of 0.8 μm or less.
摘要:
Provided is a self-supporting polycrystalline GaN substrate composed of GaN-based single crystal grains having a specific crystal orientation in a direction approximately normal to the substrate. The crystal orientations of individual GaN-based single crystal grains as determined from inverse pole figure mapping by EBSD analysis on the substrate surface are distributed with tilt angles from the specific crystal orientation, the average tilt angle being 1 to 10°. There is also provided a light emitting device including the self-supporting substrate and a light emitting functional layer, which has at least one layer composed of semiconductor single crystal grains, the at least one layer having a single crystal structure in the direction approximately normal to the substrate. The present invention makes it possible to provide a self-supporting polycrystalline GaN substrate having a reduced defect density at the substrate surface, and to provide a light emitting device having a high luminous efficiency.
摘要:
Electrostatic chucks (1A to 1F) are provided with: susceptors (11A to 11F) having an attracting surface (11a) that attracts and holds semiconductors; and electrostatic chuck electrodes (4) that are embedded in the susceptors. The susceptors are provided with plate-shape bodies (3) and surface corrosion-resistant layers (2) that face the attracting surface. The surface corrosion-resistant layer (2) is made from a ceramic material having magnesium, aluminum, oxygen and nitrogen as main components, the ceramic material having, as a main phase, an MgO—AlN solid solution crystal phase obtained by dissolving aluminum nitride in magnesium oxide.
摘要:
Provided is a SiC composite substrate including a biaxially-oriented SiC layer in which SiC is oriented in both a c-axis direction and an a-axis direction, and a SiC polycrystalline layer provided on one surface of the biaxially-oriented SiC layer. A joint interface of the biaxially-oriented SiC layer and the SiC polycrystalline layer has an uneven shape, which has an amount of unevenness of 1 to 200 μm.
摘要:
An electrostatic chuck includes a dielectric layer including an oriented alumina sintered body having a degree of c-plane orientation of 5% or more, the degree of c-plane orientation being determined by a Lotgering method using an X-ray diffraction profile obtained by the irradiation of an X-ray in the 2θ range of 20° to 70°; a ceramic layer integrated with a surface disposed opposite a wafer placement surface of the dielectric layer; and an electrostatic electrode between the dielectric layer and the ceramic layer.
摘要:
An oriented alumina substrate for epitaxial growth according to an embodiment of the present invention includes crystalline grains constituting a surface thereof, the crystalline grains having a tilt angle of 0.1° or more and less than 1.0° and an average sintered grain size of 10 μm or more.
摘要:
Provided is a light emitting device composite substrate suitable for manufacturing large-area light emitting devices at low cost. The light emitting device composite substrate comprises a substrate composed of an oriented polycrystalline alumina sintered body, and a light emitting functional layer formed on the substrate and having two or more layers composed of semiconductor single crystal grains, wherein each of the two or more layers has a single crystal structure in a direction approximately normal to the substrate.
摘要:
Provided is a self-supporting polycrystalline GaN substrate composed of GaN-based single crystal grains having a specific crystal orientation in a direction approximately normal to the substrate. The crystal orientations of individual GaN-based single crystal grains as determined from inverse pole figure mapping by EBSD analysis on the substrate surface are distributed with tilt angles from the specific crystal orientation, the average tilt angle being 1 to 10°. There is also provided a light emitting device including the self-supporting substrate and a light emitting functional layer, which has at least one layer composed of semiconductor single crystal grains, the at least one layer having a single crystal structure in the direction approximately normal to the substrate. The present invention makes it possible to provide a self-supporting polycrystalline GaN substrate having a reduced defect density at the substrate surface, and to provide a light emitting device having a high luminous efficiency.
摘要:
Provided is a surface light-emitting device comprising a substrate composed of an oriented polycrystalline zinc oxide sintered body in a plate shape, a light emitting functional layer provided on the substrate, and an electrode provided on the light emitting functional layer. According to the present invention, a surface light-emitting device having high luminous efficiency can be inexpensively provided.
摘要:
A heating apparatus includes a susceptor having a heating face of heating a semiconductor and a supporting part joined with a back face of the susceptor. The susceptor comprises a ceramic material comprising magnesium, aluminum, oxygen and nitrogen as main components. The material comprises a main phase comprising magnesium-aluminum oxynitride phase exhibiting an XRD peak at least in 2θ=47 to 50° by CuKα X-ray.