Abstract:
An optoelectronic assembly includes at least one first component that emits first electromagnetic radiation and at least one first photosensitive component that controls the first component. The first photosensitive component connects in parallel to the first component and has a first radiation-sensitive region in a beam path of the first electromagnetic radiation.
Abstract:
An optoelectronic component includes a housing, wherein a cavity is formed on an upper side of the housing, which is delimited by a wall, the housing has an empty space, the wall is arranged between the cavity and the empty space, the housing has a surface, the empty space is arranged between the surface of the housing and the wall, the wall and the surface are arranged at least partially parallel to each other, the wall includes an optically transparent material, and the wall has a wall thickness of 1 μm to 100 μm.
Abstract:
An optoelectronic assembly includes at least one first component that emits first electromagnetic radiation and at least one first photosensitive component that controls the first component. The first photosensitive component connects in parallel to the first component and has a first radiation-sensitive region in a beam path of the first electromagnetic radiation.
Abstract:
An optoelectronic sensor module and a method for producing an optoelectronic sensor module are disclosed. In an embodiment an optoelectronic sensor module includes a first semiconductor transmitter chip configured to emit radiation of a first wavelength, a second semiconductor transmitter chip configured to emit radiation of a second wavelength different from the first wavelength, a semiconductor detector chip configured to detect the radiation of the first and second wavelengths, and a first potting body being opaque to the radiation of the first and the second wavelength, wherein the first potting body directly covers side surfaces of the chips and mechanically connects the chips located in a common plane to one another, wherein a distance between the chips is less than or equal to twice an average diagonal length of the chips, and wherein the sensor module is adapted to rest against a body part to be examined.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip that generates primary radiation during intended operation of the semiconductor chip, which primary radiation is coupled out via an emission side of the semiconductor chip, an optical element on the emission side and including a plurality of transmission fields arranged laterally side by side, wherein each transmission field is individually and independently electrically controllable, the transmission fields each include an electrochromic material, the transmission fields are such that, by electrically driving a transmission field, the transmittance of the electrochromic material for a radiation coming from the direction of the semiconductor chip during operation is changed and transmittance of the optical element in the region of the respective transmission field is changed for the respective radiation.
Abstract:
In an embodiment an optoelectronic sensor arrangement includes a carrier substrate, an illuminating device, a frequency-selective optical element and a photodetector, wherein the illuminating device and the photodetector form a stacked arrangement on or with the carrier substrate, wherein the frequency-selective optical element is arranged between the illuminating device and the photodetector, wherein the photodetector is arranged in a cavity of the carrier substrate which is covered by the illuminating device and/or the frequency-selective optical element, and wherein the frequency-selective optical element includes a divider mirror and an optical filter.
Abstract:
An optoelectronic component includes an optoelectronic semiconductor chip that generates primary radiation during intended operation of the semiconductor chip, which primary radiation is coupled out via an emission side of the semiconductor chip, an optical element on the emission side and including a plurality of transmission fields arranged laterally side by side, wherein each transmission field is individually and independently electrically controllable, the transmission fields each include an electrochromic material, the transmission fields are such that, by electrically driving a transmission field, the transmittance of the electrochromic material for a radiation coming from the direction of the semiconductor chip during operation is changed and transmittance of the optical element in the region of the respective transmission field is changed for the respective radiation.
Abstract:
An electronic component, an optoelectronic component, and a component arrangement are disclosed. In an embodiment the electronic component includes an electronic semiconductor chip and a molded body, wherein the molded body covers at least one side face of the electronic semiconductor chip, wherein a surface of the electronic semiconductor chip is at least partly not covered by the molded body, wherein the molded body includes a first side face with a peg, and wherein the molded body includes a second side face with a groove matching the peg.