摘要:
A sensor positioned relative to an ion beam for use in an ion implantation system for doping semiconductor wafers. The sensor allows relatively accurate determination of ion beam potential so that steps can be taken to minimize this potential. In a preferred design, a number of electrodes are positioned relative the ion beam and biased at control voltages which allow the ion beam potential to be determined. In one embodiment, the ion beam potential is used to control injection of neutralizing electrons into the ion beam.
摘要:
Method and apparatus for processing a substrate with an energetic particle beam. Features on the substrate are oriented relative to the energetic particle beam and the substrate is scanned through the energetic particle beam. The substrate is periodically indexed about its azimuthal axis of symmetry, while shielded from exposure to the energetic particle beam, to reorient the features relative to the major dimension of the beam.
摘要:
Described is a linear batch CVD system that includes a deposition chamber, one or more substrate carriers, gas injectors and a heating system. Each substrate carrier is disposed in the deposition chamber and has at least one receptacle configured to receive a substrate. The substrate carriers are configured to hold substrates in a linear configuration. Each gas injector includes a port configured to supply a gas in a uniform distribution across one or more of the substrates. The heating system includes at least one heating element and a heating control module for uniformly controlling a temperature of the substrates. The system is suitable for high volume CVD processing of substrates. The narrow width of the deposition chamber enables a uniform distribution of precursor gases across the substrates along the length of the reaction chamber and permits a greater number of substrates to be processed in comparison to conventional deposition chambers.
摘要:
A system and method for uniform deposition of material layers on wafers in a rotating disk chemical vapor deposition reaction system is provided, wherein one or more substrates are rotated on a carrier about an axis while maintaining surfaces of the one or more substrates substantially perpendicular to the axis of rotation and facing in an upstream direction along the axis of rotation. During rotating a first gas is discharged in the downstream direction towards the one or more substrates from a first set of gas inlets. A second gas is discharged in the downstream direction towards the one or more substrates from at least one movable gas injector, and the at least one movable gas inlet is moved with a component of motion in a radial direction towards or away from the axis of rotation.
摘要:
A system and method for uniform deposition of material layers on wafers in a rotating disk chemical vapor deposition reaction system is provided, wherein one or more substrates are rotated on a carrier about an axis while maintaining surfaces of the one or more substrates substantially perpendicular to the axis of rotation and facing in an upstream direction along the axis of rotation. During rotating a first gas is discharged in the downstream direction towards the one or more substrates from a first set of gas inlets. A second gas is discharged in the downstream direction towards the one or more substrates from at least one movable gas injector, and the at least one movable gas inlet is moved with a component of motion in a radial direction towards or away from the axis of rotation.
摘要:
Methods and devices for forming an ultra-thin doping layer in a semiconductor substrate include introducing a thin film of a dopant onto a surface of the substrate and driving at least a portion of the thin dopant layer into a surface of the semiconductor. Gas ions used in the driving-in process may be inert to minimize contamination during the drive in process. The thin films can be deposited using know methods, such as physical deposition and atomic layer deposition. The dopant layers can be driven into the surface of the semiconductor using known techniques, such as pulsed plasma discharge and ion beam. In some embodiments, a standard ion implanter can be retrofit to include a deposition source.
摘要:
A continuous feed CVD system includes a wafer transport mechanism that transport a wafer through a deposition chamber during CVD processing. The deposition chamber defines a passage for the wafer to pass through while being transported by the wafer transport mechanism. The deposition chamber includes a plurality of process chambers that are isolated by barriers which maintain separate process chemistry in each of the plurality of process chambers. Each of the plurality of process chambers includes a gas input port and a gas exhaust port, and a plurality of CVD gas sources. At least two of the plurality of CVD gas sources are coupled to the gas input port of each of the plurality of process chambers.
摘要:
A system and method for uniform deposition of material layers on wafers in a rotating disk chemical vapor deposition reaction system is provided, wherein one or more substrates are rotated on a carrier about an axis while maintaining surfaces of the one or more substrates substantially perpendicular to the axis of rotation and facing in an upstream direction along the axis of rotation. During rotating a first gas is discharged in the downstream direction towards the one or more substrates from a first set of gas inlets. A second gas is discharged in the downstream direction towards the one or more substrates from at least one movable gas injector, and the at least one movable gas inlet is moved with a component of motion in a radial direction towards or away from the axis of rotation.
摘要:
The present invention relates to a sputter deposition system and to methods of use thereof for processing substrates using planetary sputter deposition methods. The sputter deposition system includes a deposition chamber having an azimuthal axis. A rotatable member is situated in the chamber and includes a plurality of magnetrons provided thereon. Each magnetron includes a corresponding one of a plurality of sputtering targets. The rotatable member is configured to position each of the magnetrons to direct sputtered material from the corresponding one of the sputtering targets to a deposition zone defined in the deposition chamber. A transport mechanism is situated in the deposition chamber and includes an arm rotatable about the azimuthal axis. A substrate holder is attached to the arm of the transport mechanism and supports the substrate as the arm rotates the substrate holder to intersect the deposition zone for depositing sputtered material on the substrate.
摘要:
A scheme for removing foreign material from the surface of a substrate by directing a high velocity aerosol of at least partially frozen particles against the foreign material to be removed. Different schemes are described for accelerating the frozen particles to very high velocities sufficient for particle removal, removal of organic layers (e.g., hard baked photoresist or ion implanted photoresist) and removal of metallic layers. In one embodiment, liquid droplets are entrained in a high velocity gas flow and the resulting gas/liquid mixture is passed through an expansion nozzle to produce a high velocity aerosol of frozen particles. In another embodiment, frozen aerosol particles are entrained in, e.g., a sonic or supersonic gas jet before impacting a surface to be cleaned. The cleaning aerosols may be applied to substrates inside a vacuum chamber or directly from a hand-held device. Also, various scanning systems are described for achieving substantially uniform exposure of the substrate to the cleaning aerosol.