摘要:
A high throughput ion implantation system that rapidly and efficiently processes large quantities of flat panel displays. The ion implantation system has an ion source, an electrode assembly, a platform mounting a workpiece, and a ion beam measuring structure. The ion source in conjunction with the electrode assembly forms an ion beam in the shape of a ribbon beam. The ion beam is formed and directed such that a first portion of the ion beam treats the workpiece while a second portion of the ion beam is contemporaneously measured by the beam measuring structure. A controller obtains data from the beam measuring structure on the ion beam's parameters, and then generates control signals to the ion implantation system in response to the data.
摘要:
An ion accelerator for use in an ion beam implanter. The accelerator forms milliampere beams of heavy ions such as boron and phosphorous in a configuration in which the terminal ion source is replaced by a neutral beam injector. The neutral beam is formed at ground by the conversion of a focused beam of positive ions to neutral ions in a charge exchange canal. The neutral beam so formed is stripped of one or more electrons in a gas or vapor filled canal in the high voltage terminal. A 180.degree. analyzing magnet located in the high voltage terminal analyzes and directs a selected charge state to an acceleration tube parallel to the neutral beam injection tube where the selected positive ions are accelerated to ground potential. To extend the energy range of the accelerator below the injection energy, a high voltage insulator is provided to insulate the ground end of the positive ion acceleration tube permitting the acceleration tube and terminal to be uniformly biased at a negative voltage to decelerate the beam to very low energies at a location close to the point of use. An accelerator assembly includes a 90.degree. analyzing magnet in the high voltage terminal.
摘要:
A magnetic scanning technique for sweeping an ion beam across an implantation target, such as a semiconductor wafer, by means of modulating the energy of a beam and directing it through an analyzer magnet, which effects a scanning motion of the beam of constant intensity, the wave form for the modulation being selected to take into account that the areal density of the ions in the scanned beam varies dependently with the amount of displacement of the beam from a reference point. An ion scan can be obtained in which the ions travel in parallel paths and enter the target at a constant desired angle throughout the scan. The technique is applicable to targets held stationary or rotated during implant. By employing predetermined modulation wave forms which are adapted to other parameters of the selected system, a desired scan distribution of ions can be obtained, for instance a uniform distribution in X and Y directions. As applied to a semiconductor wafer rotated on a disc past the ion beam, the technique solves the problem of compensating for the fact that the area of a ring on the spinning disc depends linearly on the radius of the ring. The technique makes use of the properties of ion beams in uniform magnetic fields to produce a radial dependence of the density of the ion beam on the wafer which precisely cancels the radial dependence of circumferential length as a function of radius. The magnetic scanning technique is well adapted for use with large wafers held on rotating discs and has advantages over the conventional techniques of either electrostatic or mechanical scanning. The technique is readily adapted to a variety of other wafer transport systems including rotating conveyors and linear transports.
摘要:
Scanning, as of ion beams, in which two radially aligned devices, e.g. ion source and extraction electrode, are isolated from and accurately positioned with respect to one another, while the second device moves arcuately to produce a scanning effect. Advantageously, while one device, e.g. the ion source, is moved by a rotating shaft, the second device, e.g., the extraction electrode, moves on a curved track centered on the axis of the shaft. While the devices are disposed within respective parts of a vacuum chamber, a mechanical synchronizing mechanism, located outside of the chamber, moves the devices via seals. The specific mechanism shown comprises a driven lead screw, an insulating crank for driving a shaft on which an ion source is mounted, and an arcuate motion tracking device which transmits the motion of the insulating crank into the chamber for driving the extraction electrode upon a curved track.
摘要:
A system and method for conductively and/or convectively transferring heat away from a workpiece that has been processed by a processing system, such as an ion implantation system. The conductive transfer of heat from the workpiece is effectuated by disposing the workpiece in relatively close proximity with a floor of a loadlock, which is maintained at a relatively cool temperature. The chamber pressure is disposed at a selected pressure by a pressure regulator and a vacuum pressure is applied to the backside of the workpiece closest to draw the workpiece into contact with the chamber floor, thereby effecting heat transfer from the workpiece to the cooling surface.
摘要:
A high throughput ion implantation system that rapidly and efficiently processes large quantities of flat panel displays. The ion implantation system has an ion chamber generating a stream of ions, a plasma electrode having an elongated slot with a high aspect ratio for shaping the stream of ions into a ribbon beam, and an electrode assembly for directing the stream of ions towards a workpiece. The plasma electrode can include a split extraction system having a plurality of elongated slots oriented substantially parallel to each other. The ion implantation system can also have a diffusing system for homogenizing the ion stream. Various exemplary diffusing systems include an apertured plate having an array of openings, diffusing magnets, diffusing electrodes, and dithering magnets.
摘要:
Apparatus for accurately measuring the charge distribution, and hence the voltage, on a non-conducting workpiece during ion bombardment. The invention is based on the principal that the charge on the surface of the workpiece induces equal and opposite charge on the surface of an isolated proof plane conductor placed in front of it. A workpiece is moved at a known speed in front of the proof plane, whose dimensions are small compared to the workpiece. The measurement of the time distribution of the induced charge on the proof plane is a measure of the spatial distribution of the charge on the bombarded workpiece. The proof plane surface is isolated from currents which might flow directly to its surface. The invention has utility for several purposes important to the semiconductor industry: monitoring the surface voltage distribution on a given workpiece during ion bombardment; certification to the device user that the workpiece was implanted under specified values or limits of surface voltage distribution; control of the surface charge distribution on the workpiece through the feedback of the charge-measurement signal to a device which compensates the charge on the workpiece.
摘要:
A scheme for removing foreign material from the surface of a substrate by directing a high velocity aerosol of at least partially frozen particles against the foreign material to be removed. Different schemes are described for accelerating the frozen particles to very high velocities sufficient for particle removal, removal of organic layers (e.g., hard baked photoresist or ion implanted photoresist) and removal of metallic layers. In one embodiment, liquid droplets are entrained in a high velocity gas flow and the resulting gas/liquid mixture is passed through an expansion nozzle to produce a high velocity aerosol of frozen particles. In another embodiment, frozen aerosol particles are entrained in, e.g., a sonic or supersonic gas jet before impacting a surface to be cleaned. The cleaning aerosols may be applied to substrates inside a vacuum chamber or directly from a hand-held device. Also, various scanning systems are described for achieving substantially uniform exposure of the substrate to the cleaning aerosol.
摘要:
In one aspect, foreign material on the surface of a substrate is processed to form a reaction product by: providing a directed flow of a fluid, comprising a reactant, to the vicinity of the foreign material to be processed; and delivering an aerosol of at least partially frozen particles continuously or intermittently to the foreign material to aid the reactant react with the foreign material to form the reaction product. In another aspect, foreign material is processed by: providing a directed flow of a fluid, comprising a reactant, to the foreign material to be processed in a limited area reaction region corresponding to a minor fraction of the total area of the substrate; agitating the foreign material in the limited area reaction region to aid the reactant react with the foreign material to form the reaction product; and providing relative motion between the substrate and the directed flow of fluid to achieve a substantially uniform exposure of the foreign material to fluid flow and the agitation. Infrared or ultraviolet radiation may also be delivered to the foreign material. Specific methods for processing oxide layers, organic layers and metal contamination are also described.
摘要:
A scheme for removing foreign material from the surface of a substrate by directing a high velocity aerosol of at least partially frozen particles against the foreign material to be removed. Different schemes are described for accelerating the frozen particles to very high velocities sufficient for particle removal, removal of organic layers (e.g., hard baked photoresist or ion implanted photoresist) and removal of metallic layers. In one embodiment, liquid droplets are entrained in a high velocity gas flow and the resulting gas/liquid mixture is passed through an expansion nozzle to produce a high velocity aerosol of frozen particles. In another embodiment, frozen aerosol particles are entrained in, e.g., a sonic or supersonic gas jet before impacting a surface to be cleaned. The cleaning aerosols may be applied to substrates inside a vacuum chamber or directly from a hand-held device. Also, various scanning systems are described for achieving substantially uniform exposure of the substrate to the cleaning aerosol.