Abstract:
A semiconductor device having a transistor including an oxide semiconductor film is disclosed. In the semiconductor device, the oxide semiconductor film is provided along a trench formed in an insulating layer. The trench includes a lower end corner portion and an upper end corner portion having a curved shape with a curvature radius of longer than or equal to 20 nm and shorter than or equal to 60 nm, and the oxide semiconductor film is provided in contact with a bottom surface, the lower end corner portion, the upper end corner portion, and an inner wall surface of the trench. The oxide semiconductor film includes a crystal having a c-axis substantially perpendicular to a surface at least over the upper end corner portion.
Abstract:
To provide a highly reliable semiconductor device using an oxide semiconductor. The semiconductor device includes a first electrode layer; a second electrode layer positioned over the first electrode layer and including a stacked-layer structure of a first conductive layer and a second conductive layer; and an oxide semiconductor film and an insulating film positioned between the first electrode layer and the second electrode layer in a thickness direction. The first conductive layer and the insulating film have a first opening portion in a region overlapping with the first electrode layer. The oxide semiconductor film has a second opening portion in a region overlapping with the first opening portion. The second conductive layer is in contact with the first electrode layer exposed in the first opening portion and the second opening portion.
Abstract:
To provide a highly reliable semiconductor device including a transistor using an oxide semiconductor. After a source electrode layer and a drain electrode layer are formed, an island-like oxide semiconductor layer is formed in a gap between these electrode layers so that a side surface of the oxide semiconductor layer is covered with a wiring, whereby light is prevented from entering the oxide semiconductor layer through the side surface. Further, a gate electrode layer is formed over the oxide semiconductor layer with a gate insulating layer interposed therebetween and impurities are introduced with the gate electrode layer used as a mask. Then, a conductive layer is provided on a side surface of the gate electrode layer in the channel length direction, whereby an Lov region is formed while maintaining a scaled-down channel length and entry of light from above into the oxide semiconductor layer is prevented.
Abstract:
Provided is a semiconductor device that can be miniaturized in a simple process and that can prevent deterioration of electrical characteristics due to miniaturization. The semiconductor device includes an oxide semiconductor layer, a first conductor in contact with the oxide semiconductor layer, and an insulator in contact with the first conductor. Further, an opening portion is provided in the oxide semiconductor layer, the first conductor, and the insulator. In the opening portion, side surfaces of the oxide semiconductor layer, the first conductor, and the insulator are aligned, and the oxide semiconductor layer and the first conductor are electrically connected to a second conductor by side contact.
Abstract:
A semiconductor device in which an increase in oxygen vacancies in an oxide semiconductor layer can be suppressed is provided. A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor device includes an oxide semiconductor layer in a channel formation region, and by the use of an oxide insulating film below and in contact with the oxide semiconductor layer and a gate insulating film over and in contact with the oxide semiconductor layer, oxygen of the oxide insulating film or the gate insulating film is supplied to the oxide semiconductor layer. Further, a conductive nitride is used for metal films of a source electrode layer, a drain electrode layer, and a gate electrode layer, whereby diffusion of oxygen to the metal films is suppressed.
Abstract:
A semiconductor device in which an increase in oxygen vacancies in an oxide semiconductor layer can be suppressed is provided. A semiconductor device with favorable electrical characteristics is provided. A highly reliable semiconductor device is provided. A semiconductor device includes an oxide semiconductor layer in a channel formation region, and by the use of an oxide insulating film below and in contact with the oxide semiconductor layer and a gate insulating film over and in contact with the oxide semiconductor layer, oxygen of the oxide insulating film or the gate insulating film is supplied to the oxide semiconductor layer. Further, a conductive nitride is used for a metal film of a source electrode layer and a drain electrode layer, whereby diffusion of oxygen to the metal film is suppressed.
Abstract:
The present invention provides a method for manufacturing a highly reliable semiconductor device with a small amount of leakage current. In a method for manufacturing a thin film transistor, etching is conducted using a resist mask to form a back channel portion in the thin film transistor, the resist mask is removed, a part of the back channel is etched to remove etching residue and the like left over the back channel portion, whereby leakage current caused by the residue and the like can be reduced. The etching step of the back channel portion can be conducted by dry etching using non-bias.
Abstract:
To provide a highly reliable semiconductor device including a transistor using an oxide semiconductor. After a source electrode layer and a drain electrode layer are formed, an island-like oxide semiconductor layer is formed in a gap between these electrode layers so that a side surface of the oxide semiconductor layer is covered with a wiring, whereby light is prevented from entering the oxide semiconductor layer through the side surface. Further, a gate electrode layer is formed over the oxide semiconductor layer with a gate insulating layer interposed therebetween and impurities are introduced with the gate electrode layer used as a mask. Then, a conductive layer is provided on a side surface of the gate electrode layer in the channel length direction, whereby an Lov region is formed while maintaining a scaled-down channel length and entry of light from above into the oxide semiconductor layer is prevented.
Abstract:
The present invention provides a method for manufacturing a highly reliable semiconductor device with a small amount of leakage current. In a method for manufacturing a thin film transistor, etching is conducted using a resist mask to form a back channel portion in the thin film transistor, the resist mask is removed, a part of the back channel is etched to remove etching residue and the like left over the back channel portion, whereby leakage current caused by the residue and the like can be reduced. The etching step of the back channel portion can be conducted by dry etching using non-bias.
Abstract:
A semiconductor device in which a variation of transistor characteristics is small is provided. The semiconductor device includes a transistor. The transistor includes a first insulator, a first oxide over the first insulator, a first conductor, a second conductor, and a second oxide, which is positioned between the first conductor and the second conductor, over the first oxide, a second insulator over the second oxide, and a third conductor over the second insulator. A top surface of the first oxide in a region overlapping with the third conductor is at a lower position than a position of a top surface of the first oxide in a region overlapping with the first conductor. The first oxide in the region overlapping with the third conductor has a curved surface between a side surface and the top surface of the first oxide, and the curvature radius of the curved surface is greater than or equal to 1 nm and less than or equal to 15 nm.