Microelectromechanical resonator system with improved stability with respect to temperature variations

    公开(公告)号:US10862449B2

    公开(公告)日:2020-12-08

    申请号:US16171885

    申请日:2018-10-26

    Abstract: A MEMS resonator system has a micromechanical resonant structure and an electronic processing circuit including a first resonant loop that excites a first vibrational mode of the structure and generates a first signal at a first resonance frequency. A compensation module compensates, as a function of a measurement of temperature variation, a first variation of the first resonance frequency caused by the temperature variation to generate a clock signal at a desired frequency that is stable relative to temperature. The electronic processing circuit further includes a second resonant loop, which excites a second vibrational mode of the structure and generates a second signal at a second resonance frequency. A temperature-sensing module receives the first and second signals and generates the measurement of temperature variation as a function of the first variation of the first resonance frequency and a second variation of the second resonance frequency caused by the temperature variation.

    Accelerometric sensor in MEMS technology having high accuracy and low sensitivity to temperature and ageing

    公开(公告)号:US10591505B2

    公开(公告)日:2020-03-17

    申请号:US15280720

    申请日:2016-09-29

    Abstract: The accelerometric sensor has a suspended region, mobile with respect to a supporting structure, and a sensing assembly coupled to the suspended region and configured to detect a movement of the suspended region with respect to the supporting structure. The suspended region has a geometry variable between at least two configurations associated with respective centroids, different from each other. The suspended region is formed by a first region rotatably anchored to the supporting structure and by a second region coupled to the first region through elastic connection elements configured to allow a relative movement of the second region with respect to the first region. A driving assembly is coupled to the second region so as to control the relative movement of the latter with respect to the first region.

    Piezoelectric transducer for an energy-harvesting system

    公开(公告)号:US09941821B2

    公开(公告)日:2018-04-10

    申请号:US14446237

    申请日:2014-07-29

    CPC classification number: H02N2/186 H02N2/181 H02N2/188

    Abstract: A piezoelectric transducer for energy-harvesting systems includes a substrate, a piezoelectric cantilever element, a first magnetic element, and a second magnetic element, mobile with respect to the first magnetic element. The first magnetic element is coupled to the piezoelectric cantilever element. The first magnetic element and the second magnetic element are set in such a way that, in response to relative movements between the first magnetic element and the second magnetic element through an interval of relative positions, the first magnetic element and the second magnetic element approach one another without coming into direct contact, and the interaction between the first magnetic element and the second magnetic element determines application of a force pulse on the piezoelectric cantilever element.

Patent Agency Ranking