Abstract:
The present invention relates to a thin film transistor, a thin film transistor array panel, and a manufacturing method thereof. A thin film transistor according to an exemplary embodiments of the present invention includes: a gate electrode; a gate insulating layer positioned on or under the gate electrode; a channel region overlapping the gate electrode, the gate insulating layer interposed between the channel region and the gate electrode; and a source region and a drain region, facing each other with respect to the channel region, positioned in the same layer as the channel region, and connected to the channel region, wherein the channel region, the source region, and the drain region comprise an oxide semiconductor, and wherein a carrier concentration of the source region and the drain region is larger than a carrier concentration of the channel region.
Abstract:
A conductive pattern is disclosed that includes a conductive layer including aluminum, a first capping layer disposed on the conductive layer and including titanium, and a second capping layer disposed on the first capping layer and including titanium nitride. A mixed region in which the aluminum and the titanium are mixed with each other is disposed in at least portions of the conductive layer and the first capping layer.
Abstract:
A display substrate includes a substrate, a first gate electrode on the substrate, a first gate insulating layer on the first gate electrode, an active layer on the first gate insulating layer, a second gate insulating layer on the active layer, a second gate electrode on the second gate insulating layer, an interlayer insulating layer on the second gate electrode, a first electrode on the interlayer insulating layer to contact a top surface, a side wall, and a bottom surface of the active layer via a first contact hole through the interlayer insulating layer, the second gate insulating layer, the active layer, and a portion of the first gate insulating layer, and a second electrode on the interlayer insulating layer to contact the first gate electrode via a second contact hole through the interlayer insulating layer, the second gate insulating layer, and the first gate insulating layer.
Abstract:
A manufacturing method of a display device includes: forming a transistor on a substrate; forming an organic insulating layer on the transistor; and performing a plasma treatment on the organic insulating layer. The organic insulating layer includes an acryl-based polymer, and the plasma treatment is performed by using helium gas or argon gas.
Abstract:
A display device includes: a first substrate; a barrier layer on the first substrate; an optical pattern layer on the barrier layer, and including a light blocking pattern, and a plurality of light transmitting patterns penetrating the light blocking pattern in a first direction; a first thin film transistor layer on the optical pattern layer; a light emitting element layer on the first thin film transistor layer; and a fingerprint sensor layer underneath the first substrate to receive light reflected from an external object.
Abstract:
A display device includes a first substrate, a first wavelength conversion layer and a second wavelength conversion layer disposed on the first substrate and spaced apart from each other, and a polarization layer disposed on the first wavelength conversion layer and the second wavelength conversion layer, the polarization layer including a reflection portion and a transmitting portion, in which the reflection portion overlaps a gap formed between the first wavelength conversion layer and the second wavelength conversion layer.
Abstract:
A touch sensor includes a touch substrate including a touch sensing area and a non-sensing area outside the touch sensing area, touch electrodes disposed in the touch sensing area and configured to sense a touch, and touch wiring connected to the touch electrodes in the non-sensing area, in which the touch wiring includes a first wiring conductive layer, a second wiring conductive layer disposed on the first wiring conductive layer, and transparent layers disposed at first and second sides of the second wiring conductive layer and on the first wiring conductive layer.
Abstract:
The present invention relates to a thin film transistor, a thin film transistor array panel, and a manufacturing method thereof. A thin film transistor according to an exemplary embodiments of the present invention includes: a gate electrode; a gate insulating layer positioned on or under the gate electrode; a channel region overlapping the gate electrode, the gate insulating layer interposed between the channel region and the gate electrode; and a source region and a drain region, facing each other with respect to the channel region, positioned in the same layer as the channel region, and connected to the channel region, wherein the channel region, the source region, and the drain region include an oxide semiconductor, and wherein a carrier concentration of the source region and the drain region is larger than a carrier concentration of the channel region.
Abstract:
A thin film transistor array panel includes a substrate, an insulation layer, a first semiconductor, and a second semiconductor. The insulation layer is disposed on the substrate and includes a stepped portion. The first semiconductor is disposed on the insulation layer. The second semiconductor is disposed on the insulation layer and includes a semiconductor material different than the first semiconductor. The stepped portion is spaced apart from an edge of the first semiconductor.