Abstract:
Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
Abstract:
Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
Abstract:
Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
Abstract:
An apparatus and methods for high-speed non-linear spectrally encoded multi-photon imaging that are particularly suited for use in two photon fluorescence and fluorescence lifetime imaging. The system is capable of optical image compression and scale invariant digital zoom. A wavelength agile laser with digitally synthesized electro-optic modulation in a master oscillator-power amplifier configuration is combined with spectral encoding to eliminate the speed limitations of inertial scanning. The technique for fast two photon fluorescent imaging with simultaneous lifetime imaging independently detects the location, amplitude and lifetime of fluorescent emission by synthesizing a sequential excitation beam via digital electro-optic modulation of a quasi-CW swept source followed by time encoded detection. For fluorescent imaging, spectral and temporal mappings are employed separately, with quasi-CW spectral encoding used for pumping and time encoding for constructing the image at fluorescence wavelength.
Abstract:
An imaging flow cytometry apparatus and method which allows registering multiple locations across a cell, and/or across multiple flow channels, in parallel using radio-frequency-tagged emission (FIRE) coupled with a parallel optical detection scheme toward increasing analysis throughput. An optical source is modulated by multiple RF frequencies to produce an optical interrogation beam having a spatially distributed beat frequency. This beam is directed to one or more focused streams of cells whose responsive fluorescence, in different frequencies, is registered in parallel by an optical detector.
Abstract:
A label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously is disclosed. Cell protein concentration adds a parameter to cell classification that improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. The system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. To retrieve cell information in real-time, an analog signal processing system based on quadrature phase demodulation is described.
Abstract:
Apparatus and methods for fluorescence imaging using radiofrequency multiplexed excitation. One apparatus splits an excitation laser beam into two arms of a Mach-Zehnder interferometer. The light in the first beam is frequency shifted by an acousto-optic deflector, which is driven by a phase-engineered radiofrequency comb designed to minimize peak-to-average power ratio. This RF comb generates multiple deflected optical beams possessing a range of output angles and frequency shifts. The second beam is shifted in frequency using an acousto-optic frequency shifter. After combining at a second beam splitter, the two beams are focused to a line on the sample using a conventional laser scanning microscope lens system. The acousto-optic deflectors frequency-encode the simultaneous excitation of an entire row of pixels, which enables detection and de-multiplexing of fluorescence images using a single photomultiplier tube and digital phase-coherent signal recovery techniques.
Abstract:
An apparatus and method for ultrafast real-time optical imaging that can be used for imaging dynamic events such as microfluidics or laser surgery is provided. The apparatus and methods encode spatial information from a sample into a back reflection of a two-dimensional spectral brush that is generated with a two-dimensional disperser and a light source that is mapped in to the time domain with a temporal disperser. The temporal waveform is preferably captured by an optical detector, converted to an electrical signal that is digitized and processed to provide two dimensional and three dimensional images. The produced signals can be optically or electronically amplified. Detection may be improved with correlation matching against a database in the time domain or the spatial domain. Embodiments for endoscopy, microscopy and simultaneous imaging and laser ablation with a single fiber are illustrated.
Abstract:
We describe methods and apparatus for high-speed high-contrast imaging one-, two- and three-dimensional imaging enabled by differential interference contrast time encoded amplified microscopy of transparent media without the need for chemical staining, that are suitable for a broad range of applications from semiconductor process monitoring to blood screening. Our methods and apparatus build on a unique combination of serial time-encoded amplified microscopy (STEAM) and differential interference contrast (DIC) microscopy. These methods and apparatus are ideally suited for identification of rare diseased cells in a large population of healthy cells and have the potential to revolutionize blood analysis and pathology including identification of cancer cells, such as Circulating Tumor Cells (CTC) in early stage disease.
Abstract:
A barcode reading apparatus and method in which the spectrum of a probe light is first Fourier-transformed into space, directed upon a barcode, and then Fourier-transformed converting the spectrally encoded barcode pattern to a time domain waveform. In one implementation, the Fourier transformation from the spectrum domain into a spatial domain is performed by a dispersive element, while the Fourier transformation from the spectrally encoded barcode pattern to a time domain waveform is performed by group-velocity dispersion (GVD). The temporally encoded barcode pattern is detected by a photodetector, digitized by a digitizer, and analyzed by a digital signal processor. The invention is applicable to a number of fields which involve the reading of one- and two-dimensional barcodes, displacement sensing, surface measurements, measurement of width and gap, flow cytometry, reading of optical media, presense or absence detection, and other related fields.