Abstract:
A method and device for determining the depth and fluorophore concentration of a fluorophore concentration below the surface of an optically absorbing and scattering medium suitable for use in fluorescence-based surgical guidance such as in tumor resection is described. Long-wavelength stimulus light us used to obtain deep tissue penetration. Recovery of depth is performed by fitting measured modulation amplitudes for each spatial frequency to precomputed modulation amplitudes in a table of modulation amplitudes indexed by optical parameters and depth.
Abstract:
A method for cardiovascular-dynamics correlated imaging includes receiving a time series of images of at least a portion of a patient, receiving a time series of cardiovascular data for the patient, evaluating correlation between the time series of images and the time series of cardiovascular data, and determining a property of the at least a portion of a patient, based upon the correlation. A system for cardiovascular-dynamics correlated imaging includes a processing device having: a processor, a memory communicatively coupled therewith, and a correlation module including machine-readable instructions stored in the memory that, when executed by the processor, perform the function of correlating a time series of images of at least a portion of a patient with a time series of cardiovascular data of the patient to determine a property of the at least a portion of a patient.
Abstract:
A birefringent spectral demultiplexer for hyperspectral imaging includes N birefringent beamsplitting stages arranged along a light propagation path, to produce 2N mutually divergent output light beams. Each of the output light beams differs from every other one of the output light beams in polarization and/or spectral bandwidth. Each birefringent beamsplitting stage includes a retarder for modifying polarization of each light beam received by the birefringent beamsplitting stage, and a Wollaston prism for splitting each light beam into two orthogonally polarized and divergent light beams. The Wollaston prism has a beamsplitting interface arranged at an oblique angle to the light propagation path. The oblique angle of the beamsplitting interface of each Wollaston prism of the series, except for the first one, is smaller than the oblique angle of the beamsplitting interface of each preceding Wollaston prism. The demultiplexer may be configured to accept input light of any polarization.
Abstract:
A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
Abstract:
Systems and methods generate a 3D model of a surface of an object immersed in a transparent liquid within a stationary cylindrical transparent tank. First and second laser line projectors and a camera are rotated around a central axis of the cylindrical tank. The first and second laser line projectors each generate a laser line perpendicular to a plane or rotation and aligned with the center of rotation. The camera images the object. An image from the camera is captured at each of several angular positions of the camera relative to a reference position of the stationary cylindrical tank. The captured images are processed to determine, for each laser line within each image, a plurality of 3D positions where the laser line is incident upon a surface of the object. In embodiments, images are corrected with ray tracing or image warping and registration functions.
Abstract:
A system and method for determining intraoperative locations of a lesion in tissue from lesion locations determined in preoperative imaging includes determining three dimensional locations of surface features of the organ in the preoperative images. A preoperative surface map is extracted from stereo images annotated with surface features from preoperative images. An intraoperative surface map of the organ is extracted from stereo images, and surface features are identified in the stereo images corresponding to surface features annotated into the preoperative surface map. Three dimensional displacements of the surface features are determined and used to constrain a computer model of deformation of the organ. In embodiments, the model of deformation is adapted or constrained to model locations and dimensions of surgical cavities using an optical flow method and/or locations of surgical instruments in the organ. The model of deformation is used to determine intraoperative locations for the lesion.
Abstract:
A system for determining parameters of porous media or material, which in an embodiment is biological tissue, includes an actuator and a displacement monitor. The actuator is adapted to apply a displacement to tissue at a particular frequency selected from a range of frequencies, and the force monitor adapted to monitor a mechanical response of tissue. The system also has a processor coupled to drive the actuator and to read the mechanical response, the processor coupled to execute from memory a poroelastic model of mechanical properties of the material, and a convergence procedure for determining parameters for the poroelastic model such that the model predicts mechanical response of the tissue to within limits.
Abstract:
A system and method for creating a cavity with a drill assembly provides a powered drill shaft assembly having an articulating tip and a position sensor along the drill shaft; a drill motor assembly with a rotational motor, linear actuator, torque sensor, rotation sensor, electrical resistance sensor and a controller unit having a plurality of programs providing user interface and controlling the operation of the powered drill arrangement; a shroud for the drill shaft with a water port; and a computer software package that combines user specifications with sensor data to control activation and displacement of the drill with a user interface, controls the motor for rotational speed and drilling depth, and gives sensor status, and a display displaying status of a drilling procedure and an image from an imaging device, and that is programmable for a set of parameters for a drilling procedure.
Abstract:
This invention provides a hand-held stereovision (HHS) system that is an efficient, accurate, and radiation-free imaging device to acquire intraoperative profiles of the exposed spine in prone position. The reconstructed intraoperative stereovision surfaces (iSV) are registered with preoperative CT (pCT; supine position) in a nonrigid fashion to generate updated CT images (uCT) and correct for vertebral posture and alignment changes. Updated CT images are uploaded to a commercial navigation system for surgical navigation.
Abstract:
An imaging system includes an illumination device for illuminating a target. A surgical microscope receives light from the target, the surgical microscope comprising at least one optical output port at which at least a portion of the received light is provided as an output from the surgical microscope. A tunable filter receives the portion of the received light provided as the output from the surgical microscope, the tunable filter being tunable to pass a filtered portion of the received light, the filtered portion of the received light having a plurality of wavelengths selected by the tunable filter and provided as output from the tunable filter. A high-resolution, broad-bandwidth electronic camera receives the light of a plurality of wavelengths selected by the tunable filter, the electronic camera converting the light of a plurality of wavelengths selected by the tunable filter to a plurality of electrical signals. A processor processes the plurality of electrical signals to form an image of the target.