摘要:
A semiconductor device structure is provided which includes a first field effect transistor (“FET”) having a first channel region, a first source region, a first drain region and a first gate conductor overlying the first channel region. A second FET is included which has a second channel region, a second source region, a second drain region and a second gate conductor overlying the second channel region. The first and second gate conductors are portions of a single elongated conductive member extending over both the first and second channel regions. A first stressed film overlies the first FET, the first stressed film applying a stress having a first value to the first channel region. A second stressed film overlies the second FET, the second stressed film applying a stress having a second value to the second channel region. The second value is substantially different from the first value. In addition, the first and second stressed films abut each other at a common boundary and present a substantially co-planar major surface at the common boundary.
摘要:
The present invention provides structures and methods for providing facets with different crystallographic orientations than what a semiconductor substrate normally provides. By masking a portion of a semiconductor surface and exposing the rest to an anisotripic etch process that preferentially etches a set of crystallographic planes faster than others, new facets with different surface orientations than the substrate orientation are formed on the semiconductor substrate. Alternatively, selective epitaxy may be utilized to generate new facets. The facets thus formed are joined to form a lambda shaped profile in a cross-section. The electrical properties of the new facets, specifically, the enhanced carrier mobility, are utilized to enhance the performance of transistors. In a transistor with a channel on the facets that are joined to form a lambda shaped profile, the current flows in the direction of the ridge joining the facets avoiding any inflection in the direction of the current.
摘要:
A semiconductor structure including at least one transistor located on a surface of a semiconductor substrate, wherein the at least one transistor has a sub-lithographic channel length, is provided. Also provided is a method to form such a semiconductor structure using self-assembling block copolymer that can be placed at a specific location using a pre-fabricated hard mask pattern.
摘要:
The present invention relates to a heterojunction tunneling effect transistor (TFET), which comprises spaced apart source and drain regions with a channel region located therebetween and a gate stack located over the channel region. The drain region comprises a first semiconductor material and is doped with a first dopant species of a first conductivity type. The source region comprises a second, different semiconductor material and is doped with a second dopant species of a second, different conductivity type. The gate stack comprises at least a gate dielectric and a gate conductor. When the heterojunction TFET is an n-channel TFET, the drain region comprises n-doped silicon, while the source region comprises p-doped silicon germanium. When the heterojunction TFET is a p-channel TFET, the drain region comprises p-doped silicon, while the source region comprises n-doped silicon carbide.
摘要:
A semiconductor device includes a semiconductor substrate having at least one gap, extending under a portion of the semiconductor substrate. A gate stack is on the semiconductor substrate. A strain layer is formed in at least a portion of the at least one gap. The strain layer is formed only under at least one of a source region and a drain region of the semiconductor device.
摘要:
A method of fabrication is provided in which a field effect transistor (FET) is formed having a channel region and source and drain regions adjacent to the channel region. A first stressed region underlies the channel region, in which the first type of stress is either compressive type or tensile type. Second stressed regions having a second type of stress underlie the source and drain regions, in which the second type of stress is an opposite one of the compressive type or tensile type stress of the first stressed region.
摘要:
A method of processing a substrate of a device comprises the as following steps. Form a cap layer over the substrate. Form a dummy layer over the cap layer, the cap layer having a top surface. Etch the dummy layer forming patterned dummy elements of variable widths and exposing sidewalls of the dummy elements and portions of the top surface of the cap layer aside from the dummy elements. Deposit a spacer layer over the device covering the patterned dummy elements and exposed surfaces of the cap layer. Etch back the spacer layer forming sidewall spacers aside from the sidewalls of the patterned dummy elements spaced above a minimum spacing and forming super-wide spacers between sidewalls of the patterned dummy elements spaced less than the minimum spacing. Strip the patterned dummy elements. Expose portions of the substrate aside from the sidewall spacers. Pattern exposed portions of the substrate by etching into the substrate.
摘要:
A semiconductor device is provided with a stressed channel region, where the stresses film causing the stress in the stress channel region can extend partly or wholly under the gate structure of the semiconductor device. In some embodiments, a ring of stress film surround the channel region, and may apply stress from all sides of the channel. Consequently, the stress film better surrounds the channel region of the semiconductor device and can apply more stress in the channel region.
摘要:
An integrated circuit and method of fabrication are provided in which the integrated circuit includes a field effect transistor (FET) having a channel region and source and drain regions adjacent to the channel region. A first stressed region having a first type of stress is provided to underlie the channel region, in which the first type of stress is either compressive type or tensile type. Second stressed regions having a second type of stress are provided to underlie the source and drain regions, in which the second type of stress is an opposite one of the compressive type or tensile type stress of the first stressed region.
摘要:
A structure is provided which includes a semiconductor device region including a first portion and a second portion. A current-conducting member is provided, which extends horizontally over the first portion but not over the second portion. A first film, such as a stress-imparting film, extends over the second portion and only partially over the current-conducting member to expose a contact portion of the member. A first contact via is provided in conductive communication with the contact portion of the member, the first contact via having a self-aligned silicide-containing region. A second contact via is provided in conductive communication with the second portion of the semiconductor device region, the second contact via extending through the first film.