Roughness reduction methods for materials using illuminated etch solutions

    公开(公告)号:US10896824B2

    公开(公告)日:2021-01-19

    申请号:US16287669

    申请日:2019-02-27

    Abstract: Methods are disclosed that illuminate etch solutions to provide controlled etching of materials. An etch solution (e.g., gaseous, liquid, or combination thereof) with a first level of reactants is applied to the surface of a material to be etched. The etch solution is illuminated to cause the etch solution to have a second level of reactants that is greater than the first level. The surface of the material is modified (e.g., oxidized) with the illuminated etch solution, and the modified layer of material is removed. The exposing and removing can be repeated or cycled to etch the material. Further, for oxidation/dissolution embodiments the oxidation and dissolution can occur simultaneously, and the oxidation rate can be greater than the dissolution rate. The material can be a polycrystalline material, a polycrystalline metal, and/or other material. One etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.

    METHOD AND DEVICE FOR CONTROLLING PATTERN AND STRUCTURE FORMATION BY AN ELECTRIC FIELD
    22.
    发明申请
    METHOD AND DEVICE FOR CONTROLLING PATTERN AND STRUCTURE FORMATION BY AN ELECTRIC FIELD 审中-公开
    用于控制电场的图案和结构形成的方法和装置

    公开(公告)号:US20150152556A1

    公开(公告)日:2015-06-04

    申请号:US14577013

    申请日:2014-12-19

    Abstract: A processing method and apparatus uses at least one electric field applicator (34) biased to produce a spatial-temporal electric field to affect a processing medium (26), suspended nano-objects (28) or the substrate (30) in processing, interacting with the dipole properties of the medium (26) or particles to construct structure on the substrate (30). The apparatus may include a magnetic field, an acoustic field, an optical force, or other generation device. The processing may affect selective localized layers on the substrate (30) or may control orientation of particles in the layers, control movement of dielectrophoretic particles or media, or cause suspended particles of different properties to follow different paths in the processing medium (26). Depositing or modifying a layer on the substrate (30) may be carried out. Further, the processing medium (26) and electrical bias may be selected to prepare at least one layer on the substrate (30) for bonding the substrate (30) to a second substrate, or to deposit carbon nanotubes (CNTs) with a controlled orientation on the substrate.

    Abstract translation: 处理方法和装置使用至少一个电场施加器(34),其被偏置以产生空间 - 时间电场,以影响处理介质(26),悬浮的纳米物体(28)或基板(30)在处理中相互作用 其中介质(26)或颗粒的偶极子性质在衬底(30)上构造结构。 该装置可以包括磁场,声场,光学力或其他生成装置。 处理可能影响基底(30)上的选择性局部层,或者可以控制层中的颗粒的取向,控制介电电泳颗粒或介质的移动,或引起不同性质的悬浮颗粒遵循处理介质(26)中的不同路径。 可以在衬底(30)上沉积或修饰一层。 此外,可以选择处理介质(26)和电偏压以在衬底(30)上制备用于将衬底(30)结合到第二衬底的至少一个层,或者以受控的方向沉积碳纳米管(CNT) 在基板上。

    Photo-assisted chemical vapor etch for selective removal of ruthenium

    公开(公告)号:US10818512B2

    公开(公告)日:2020-10-27

    申请号:US16773211

    申请日:2020-01-27

    Abstract: Methods and systems herein enable selective removal of ruthenium (Ru) metal at high throughput, and without potentially damaging effects of plasma. Techniques include a photo-assisted chemical vapor etch (PCVE) method to selectively remove Ru metal as a volatile species. A substrate with ruthenium surfaces is positioned within a processing chamber. A photo-oxidizer is received in vapor form in the processing chamber. The photo-oxidizer is a species that generates reactive oxygen species in response to actinic radiation. Reactive oxygen species are then generated by irradiation of the photo-oxidizer, such as with ultraviolet radiation. The reactive oxygen species react with ruthenium surfaces causing the ruthenium surfaces to become oxidized. Oxidized ruthenium is then removed from the substrate, such as be vaporization.

    Method for depositing a planarization layer using polymerization chemical vapor deposition

    公开(公告)号:US10115586B2

    公开(公告)日:2018-10-30

    申请号:US15587570

    申请日:2017-05-05

    Abstract: A method is provided for depositing a planarization layer over features on a substrate using sequential polymerization chemical vapor deposition. According to one embodiment, the method includes providing a substrate containing a plurality of features with gaps between the plurality of features, delivering precursor molecules by gas phase exposure to the substrate, adsorbing the precursor molecules on the substrate to at least substantially fill the gaps with a layer of the adsorbed precursor molecules, and reacting the precursor molecules to form a polymer layer that at least substantially fills the gaps.

Patent Agency Ranking