Abstract:
Methods are disclosed that illuminate etch solutions to provide controlled etching of materials. An etch solution (e.g., gaseous, liquid, or combination thereof) with a first level of reactants is applied to the surface of a material to be etched. The etch solution is illuminated to cause the etch solution to have a second level of reactants that is greater than the first level. The surface of the material is modified (e.g., oxidized) with the illuminated etch solution, and the modified layer of material is removed. The exposing and removing can be repeated or cycled to etch the material. Further, for oxidation/dissolution embodiments the oxidation and dissolution can occur simultaneously, and the oxidation rate can be greater than the dissolution rate. The material can be a polycrystalline material, a polycrystalline metal, and/or other material. One etch solution can include hydrogen peroxide that is illuminated to form hydroxyl radicals.
Abstract:
A processing method and apparatus uses at least one electric field applicator (34) biased to produce a spatial-temporal electric field to affect a processing medium (26), suspended nano-objects (28) or the substrate (30) in processing, interacting with the dipole properties of the medium (26) or particles to construct structure on the substrate (30). The apparatus may include a magnetic field, an acoustic field, an optical force, or other generation device. The processing may affect selective localized layers on the substrate (30) or may control orientation of particles in the layers, control movement of dielectrophoretic particles or media, or cause suspended particles of different properties to follow different paths in the processing medium (26). Depositing or modifying a layer on the substrate (30) may be carried out. Further, the processing medium (26) and electrical bias may be selected to prepare at least one layer on the substrate (30) for bonding the substrate (30) to a second substrate, or to deposit carbon nanotubes (CNTs) with a controlled orientation on the substrate.
Abstract:
A method for removal of stray Ru metal nuclei for selective Ru metal layer formation includes depositing ruthenium (Ru) metal on a patterned substrate by vapor phase deposition, where a Ru metal layer is deposited on a surface of a metal layer and Ru metal nuclei are deposited on a surface of a dielectric layer. The method further includes removing the Ru metal nuclei by gas phase etching using an ozone (O3) gas exposure that forms volatile ruthenium oxide species by oxidation of the Ru metal nuclei, and repeating the depositing and removing steps at least once to increase a thickness of the Ru metal layer, where the depositing is interrupted before the Ru metal nuclei reach a critical size that results in formation of non-volatile ruthenium oxide species and incomplete removal of the Ru metal nuclei during the gas phase etching.
Abstract:
Provided is a pore-filling method for protecting the pores of a porous material. The method, which is performed using a modified i-CVD technique, involves filling the pores of a porous material with a gas phase monomer within a pressure chamber and subsequently polymerizing the monomer, both within the pores and on the surface of the material as an overburden. The method is solvent-free and can fill and protect pores of any size of any material.
Abstract:
Method for selective etching of materials using an ultrathin etch stop layer (ESL), where the ESL is effective at a thickness as small as approximately one monolayer using atomic layer etching (ALE). A substrate processing method includes depositing a first film on a substrate, depositing a second film on the first film, and selectively etching the second film relative to the first film using an ALE process, where the etching self-terminates at an interface of the second film and the first film.
Abstract:
Methods and systems herein enable selective removal of ruthenium (Ru) metal at high throughput, and without potentially damaging effects of plasma. Techniques include a photo-assisted chemical vapor etch (PCVE) method to selectively remove Ru metal as a volatile species. A substrate with ruthenium surfaces is positioned within a processing chamber. A photo-oxidizer is received in vapor form in the processing chamber. The photo-oxidizer is a species that generates reactive oxygen species in response to actinic radiation. Reactive oxygen species are then generated by irradiation of the photo-oxidizer, such as with ultraviolet radiation. The reactive oxygen species react with ruthenium surfaces causing the ruthenium surfaces to become oxidized. Oxidized ruthenium is then removed from the substrate, such as be vaporization.
Abstract:
A method is provided for depositing a planarization layer over features on a substrate using sequential polymerization chemical vapor deposition. According to one embodiment, the method includes providing a substrate containing a plurality of features with gaps between the plurality of features, delivering precursor molecules by gas phase exposure to the substrate, adsorbing the precursor molecules on the substrate to at least substantially fill the gaps with a layer of the adsorbed precursor molecules, and reacting the precursor molecules to form a polymer layer that at least substantially fills the gaps.
Abstract:
A method is provided for depositing a planarization layer over features on a substrate using sequential polymerization chemical vapor deposition. According to one embodiment, the method includes providing a substrate containing a plurality of features with gaps between the plurality of features, delivering precursor molecules by gas phase exposure to the substrate, adsorbing the precursor molecules on the substrate to at least substantially fill the gaps with a layer of the adsorbed precursor molecules, and reacting the precursor molecules to form a polymer layer that at least substantially fills the gaps.