Abstract:
A medical device lead includes a thin profile conductor assembly. A proximal connector includes a proximal end that is configured to couple the lead to a pulse generator. An insulative lead body extends distally from the proximal connector. The conductor assembly extends distally from the proximal end within the lead body and includes a non-conductive tubular core member that defines a lumen, an outer insulative layer, and a multilayer conductor between the tubular core member and the outer insulative layer. The multilayer conductor is electrically connected to the proximal connector and includes a first conductive layer adjacent to the tubular core member and a second conductive layer adjacent to the first conductive layer opposite the tubular core member. A conductivity of the second conductive layer is greater than a conductivity of the first conductive layer.
Abstract:
In a process for producing a biocompatible stent, a tubular substrate of the stent adapted for diametric expansion has a layer of a noble metal oxide formed over at least the outer surface of greater diameter of the substrate, the substrate being composed of a metal or an alloy thereof that is non-noble or less-noble than the layer's noble metal. An interface region adapted to prevent corrosion and to provide a firm bond between the surface of the substrate and the noble metal oxide layer is established, at least in part, by forming the noble metal oxide layer with a progressively varying concentration of noble metal-to-oxide with depth of the layer such that a surface of pure noble metal and negligible oxide of the layer is in closest proximity to the surface of the substrate. In one embodiment of the process, the interface region is established by forming the surface of pure noble metal and negligible oxide thereof in direct contact with the metal or alloy of the substrate surface. In another, the interface region is established by first creating an oxide of the substrate metal or alloy thereof at the substrate surface, and then forming the noble metal oxide layer as above, but in contact with the substrate metal or alloy oxide. Alternatively, the noble metal oxide layer has no progressively varying concentration but simply overlies an oxide of the substrate metal or alloy.
Abstract:
An implantable medical device for releasing therapeutic agent having a medical device body and a plurality of reservoir-defining structures disposed on a surface of the body. A reservoir can be defined by the reservoir-defining structures and therapeutic agent may be located in the reservoir. A cover may extend over the reservoir so that the therapeutic agent is released from the reservoir when the medical device implanted. Methods for making the medical device may also include providing a medical device body, positioning a plurality of reservoir-defining structures on a surface of the body to form a reservoir, loading therapeutic agent into the reservoir, and covering the reservoir so that the therapeutic agent may release when the medical device is implanted. Alternatively, the reservoir may be covered with a cover and an opening formed in the cover so that the therapeutic agent may release when the medical device is implanted.
Abstract:
A bioerodible endoprosthesis erodes to a desirable geometry that can provide, e.g., improved mechanical properties or degradation characteristics.
Abstract:
An endoprosthesis, such as a stent, includes a ceramic, such as IROX, having a select morphology and composition and a polymer coating, both of which are deposited by pulsed laser deposition.
Abstract:
A stent is adapted to be implanted in a duct of a human body to maintain an open lumen at the implant site, and to allow viewing body tissue and fluids by magnetic resonance imaging (MRI) energy applied external to the body. The stent constitutes a metal scaffold. An electrical circuit resonant at the resonance frequency of the MRI energy is fabricated integral with the scaffold structure of the stent to promote viewing body properties within the lumen of the stent.
Abstract:
Systems and methods for a resonator with an adjustable capacitance for a medical device. In one embodiment, a resonator system includes a resonator device with an LC resonator circuit that has an adjustable capacitance, an inductor coil in series with the adjustable capacitance, and an adjustable capacitance control that can control the adjustable capacitance to obtain different particular capacitance values. This embodiment also includes a medical device, positioned with the resonator device, so that at least a portion of the inductor coil surrounds a space that is surrounded by at least a portion of the medical device.
Abstract:
A medical device lead includes a thin profile conductor assembly. A proximal connector includes a proximal end that is configured to couple the lead to a pulse generator. An insulative lead body extends distally from the proximal connector. The conductor assembly extends distally from the proximal end within the lead body and includes a non-conductive tubular core member that defines a lumen, an outer insulative layer, and a multilayer conductor between the tubular core member and the outer insulative layer. The multilayer conductor is electrically connected to the proximal connector and includes a first conductive layer adjacent to the tubular core member and a second conductive layer adjacent to the first conductive layer opposite the tubular core member. A conductivity of the second conductive layer is greater than a conductivity of the first conductive layer.
Abstract:
An expandable medical device having a particle layer disposed over a reservoir containing a therapeutic agent. The particle layer has a first porosity when the medical device is in the unexpanded configuration and a second porosity when the medical device is in the expanded configuration. The particle layer comprises a plurality of micron-sized or nano-sized particles. In certain embodiments, the particles are not connected to each other, and as such, the different porosities are provided by changes in the spacing between the particles as the medical device is expanded/unexpanded. Also disclosed are medical devices having a particle layer, wherein the particle layer comprises a plurality of encapsulated particles, and methods of coating medical devices with particles.
Abstract:
Among other things, a bio-erodible implantable endoprosthesis comprises a member that includes (a) a core having a surface, and (b) a bio-erodible metal on a least a portion of the surface of the core, wherein the bio-erodible metal erodes more slowly than the core and includes openings through which physiological fluids can access the core upon implantation.