摘要:
A first insulating film is formed on a base substrate, then a second insulating film is formed on the first insulating film, the second insulating film having a relative permittivity higher than that of the first insulating film. A gate electrode is formed on the second insulating film. The second insulating film forming includes first to sixth steps, and a cycle consisting of the first to sixth steps is repeated.
摘要:
In the chemical vapor deposition apparatus, a substrate stage for mounting a substrate is provided inside a reaction chamber of the apparatus. A source gas inlet for introducing a source gas and exhaust outlets and for exhausting the source gas are provided. Exhaust outlet valves provided for exhaust outlets are open and shut successively with time. The direction of the flow of source gas relative to the fixed substrate varies with time. The present chemical vapor deposition apparatus allows the improved evenness of film thickness, the composition ratio, and the like within the substrate surface as well as the reduction of particles of foreign substance generated inside the reaction chamber.
摘要:
A method of forming a (Ba, Sr) TiO3 high dielectric constant thin film with sufficient coverage is provided. A Ba material, an Sr material and a Ti material including bis (t-butoxy) bis (dipivaloylmethanate) titanium are dissolved in an organic solvent to obtain a solution material. The solution material is vaporized, so that material gas is obtained. A (Ba, Sr) TiO3 thin film is formed on a substrate by CVD reaction using the material gas.
摘要:
An apparatus for depositing a thin film on a substrate by chemical vapor deposition (CVD) includes a material container for containing a liquid CVD source material; a material feeder for feeding the liquid CVD source material from the material container to a vaporizer while keeping the CVD source material liquid; a vaporizer for vaporizing the liquid CVD source material fed from the material feeder by heating the liquid CVD source material to a high temperature to form a CVD source material gas; a reaction chamber connected to the vaporizer by a pipe for forming a thin film on a substrate using the CVD source material gas; and a thermostatic box surrounding the reaction chamber, wherein both of the vaporizer and piping connecting the vaporizer to the reaction chamber are located within the thermostatic box.
摘要:
There is provided a (Ba, Sr) TiO.sub.3 film of higher dielectric constant and less leakage current for serving as a dielectric thin film of a capacitor in a semiconductor memory. DPM (dipivaloylmethanato) compounds of Ba, Sr and Ti are dissolved in THF (tetrahydrofuran) to obtain Ba(DPM).sub.2 /THF, Sr(DPM).sub.2 /THF and TiO(DPM).sub.2 /THF solutions which are used as source material solutions. A (Ba, Sr) TiO.sub.3 film is formed by a CVD method while increasing a relative percentage of a Ti source material flow rate to a sum of Ba source material flow rate and Sr source material flow rate. The film formation is carried out in multiple steps, and annealing is applied in each step after deposition of the film.
摘要:
To improve productivity and performance of a CMISFET including a high-dielectric-constant gate insulating film and a metal gate electrode. An Hf-containing insulating film for a gate insulating film is formed over the main surface of a semiconductor substrate. A metal nitride film is formed on the insulating film. The metal nitride film in an nMIS formation region where an n-channel MISFET is to be formed is selectively removed by wet etching using a photoresist pattern on the metal nitride films a mask. Then, a threshold adjustment film containing a rare-earth element is formed. The Hf-containing insulating film in the nMIS formation region reacts with the threshold adjustment film by heat treatment. The Hf-containing insulating film in a pMIS formation region where a p-channel MISFET is to be formed does not react with the threshold adjustment film because of the existence of the metal nitride film. Then, after removing the unreacted threshold adjustment film and the metal nitride film, metal gate electrodes are formed in the nMIS formation region and the pMIS formation region.
摘要:
Provided is a highly reliable semiconductor device equipped with a plurality of semiconductor elements having desired properties, respectively; and a manufacturing method facilitating the manufacture of the semiconductor device. The semiconductor device is manufactured by forming a gate-electrode metal film having a thickness of from 3 to 30 nm over the entire upper surface of a gate insulating film; forming an n-side cap layer having a thickness of 10 nm or less over the entire upper surface of a portion of the gate-electrode metal film belonging to an nFET region by using a material different from that of the gate-electrode metal film; and carrying out heat treatment over the n-side cap layer to diffuse the material of the n-side cap layer into the gate-electrode metal film immediately below the n-side cap layer and react them to form an n-side gate-electrode metal film in a nFET region. A poly-Si layer is then deposited, followed by gate electrode processing.
摘要:
Provided is a highly reliable semiconductor device equipped with a plurality of semiconductor elements having desired properties, respectively; and a manufacturing method facilitating the manufacture of the semiconductor device. The semiconductor device is manufactured by forming a gate-electrode metal film having a thickness of from 3 to 30 nm over the entire upper surface of a gate insulating film; forming an n-side cap layer having a thickness of 10 nm or less over the entire upper surface of a portion of the gate-electrode metal film belonging to an nFET region by using a material different from that of the gate-electrode metal film; and carrying out heat treatment over the n-side cap layer to diffuse the material of the n-side cap layer into the gate-electrode metal film immediately below the n-side cap layer and react them to form an n-side gate-electrode metal film in a nFET region. A poly-Si layer is then deposited, followed by gate electrode processing.
摘要:
Provided is a highly reliable semiconductor device equipped with a plurality of semiconductor elements having desired properties, respectively; and a manufacturing method facilitating the manufacture of the semiconductor device. The semiconductor device is manufactured by forming a gate-electrode metal film having a thickness of from 3 to 30 nm over the entire upper surface of a gate insulating film; forming an n-side cap layer having a thickness of 10 nm or less over the entire upper surface of a portion of the gate-electrode metal film belonging to an nFET region by using a material different from that of the gate-electrode metal film; and carrying out heat treatment over the n-side cap layer to diffuse the material of the n-side cap layer into the gate-electrode metal film immediately below the n-side cap layer and react them to form an n-side gate-electrode metal film in a nFET region. A poly-Si layer is then deposited, followed by gate electrode processing.
摘要:
In the chemical vapor deposition apparatus, a substrate stage for mounting a substrate is provided inside a reaction chamber of the apparatus. A source gas inlet for introducing a source gas and exhaust outlets and for exhausting the source gas are provided. Exhaust outlet valves provided for exhaust outlets are open and shut successively with time. The direction of the flow of source gas relative to the fixed substrate varies with time. The present chemical vapor deposition apparatus allows the improved evenness of film thickness, the composition ratio, and the like within the substrate surface as well as the reduction of particles of foreign substance generated inside the reaction chamber.