Abstract:
A fluorine treatment that can shape the electric field profile in electronic devices in 1, 2, or 3 dimensions is disclosed. A method to increase the breakdown voltage of AlGaN/GaN high electron mobility transistors, by the introduction of a controlled amount of dispersion into the device, is also disclosed. This dispersion is large enough to reduce the peak electric field in the channel, but low enough in order not to cause a significant decrease in the output power of the device. In this design, the whole transistor is passivated against dispersion with the exception of a small region 50 to 100 nm wide right next to the drain side of the gate. In that region, surface traps cause limited amounts of dispersion, that will spread the high electric field under the gate edge, therefore increasing the breakdown voltage. Three different methods to introduce dispersion in the 50 nm closest to the gate are described: (1) introduction of a small gap between the passivation and the gate metal, (2) gradually reducing the thickness of the passivation, and (3) gradually reducing the thickness of the AlGaN cap layer in the region close the gate.
Abstract:
A method for fabricating an electronic device, comprising wafer bonding a first semiconductor material to a III-nitride semiconductor, at a temperature below 550° C., to form a device quality heterojunction between the first semiconductor material and the III-nitride semiconductor, wherein the first semiconductor material is different from the III-nitride semiconductor and is selected for superior properties, or preferred integration or fabrication characteristics in the injector region as compared to the III-nitride semiconductor.
Abstract:
A process for fabricating single or multiple gate field plates using consecutive steps of dielectric material deposition/growth, dielectric material etch and metal evaporation on the surface of a field effect transistors. This fabrication process permits a tight control on the field plate operation since dielectric material deposition/growth is typically a well controllable process. Moreover, the dielectric material deposited on the device surface does not need to be removed from the device intrinsic regions: this essentially enables the realization of field-plated devices without the need of low-damage dielectric material dry/wet etches. Using multiple gate field plates also reduces gate resistance by multiple connections, thus improving performances of large periphery and/or sub-micron gate devices.
Abstract:
A novel enhancement mode field effect transistor (FET), such as a High Electron Mobility Transistors (HEMT), has an N-polar surface uses polarization fields to reduce the electron population under the gate in the N-polar orientation, has improved dispersion suppression, and low gate leakage.
Abstract:
An LED made from a wide band gap semiconductor material and having a low resistance p-type confinement layer with a tunnel junction in a wide band gap semiconductor device is disclosed. A dissimilar material is placed at the tunnel junction where the material generates a natural dipole. This natural dipole is used to form a junction having a tunnel width that is smaller than such a width would be without the dissimilar material. A low resistance p-type confinement layer having a tunnel junction in a wide band gap semiconductor device may be fabricated by generating a polarization charge in the junction of the confinement layer, and forming a tunnel width in the junction that is smaller than the width would be without the polarization charge. Tunneling through the tunnel junction in the confinement layer may be enhanced by the addition of impurities within the junction. These impurities may form band gap states in the junction.
Abstract:
A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
Abstract:
A gated electrode structure for altering a potential and electric field in an electrolyte near at least one working electrode is disclosed. The gated electrode structure may comprise a gate electrode biased appropriately with respect to a working electrode. Applying an appropriate static or dynamic (time varying) gate potential relative to the working electrode modifies the electric potential and field in an interfacial region between the working electrode and the electrolyte, and increases electron emission to and from states in the electrolyte, thereby facilitating an electrochemical, electrolytic or electrosynthetic reaction and reducing electrode overvoltage/overpotential.
Abstract:
Growth of doped gallium nitride, especially p-type gallium nitride, without using post-growth processing is achieved by eliminating hydrogen containing molecules from the growth process before cooling down the substrate. Rapid cooling of the substrate with nitrogen gas prevents the reaction of p-type dopant atoms with hydrogen, and the use of the nitrogen gas also keeps the nitrogen intact within the crystalline structure.
Abstract:
A channel layer, donor layer, Schottky layer, and cap layer are formed on a substrate. A source and drain are formed on the cap layer. A gate is formed on the cap layer, or at the bottom of a recess which is formed through the cap layer and partially extends into the Schottky layer. The donor and Schottky layers are formed of a semiconductive material which includes an oxidizable component such as aluminum. A passivation or stop layer of a lattice-matched, non-oxidizable material is formed underlying the source, drain, and gate, and sealingly overlying the donor layer. The stop layer may be formed between the Schottky layer and the donor layer, or constitute a superlattice in combination with the Schottky layer consisting of alternating stop and Schottky sublayers. Alternatively, the stop layer may sealingly overlie the Schottky layer, and further constitute the cap layer.
Abstract:
A method for growing high mobility, high charge Nitrogen polar (N-polar) or Nitrogen face (In, Al, Ga)N/GaN High Electron Mobility Transistors (HEMTs). The method can provide a successful approach to increase the breakdown voltage and reduce the gate leakage of the N-polar HEMTs, which has great potential to improve the N-polar or N-face HEMTs' high frequency and high power performance.