Abstract:
Provided herein, among other aspects, are methods and apparatuses for analyzing particles in a sample. In some aspects, the particles can be analytes, cells, nucleic acids, or proteins and contacted with a tag, partitioned into aliquots, detected by a ranking device, and isolated. The methods and apparatuses provided herein may include a microfluidic chip. In some aspects, the methods and apparatuses may be used to quantify rare particles in a sample, such as cancer cells and other rare cells for disease diagnosis, prognosis, or treatment.
Abstract:
Polymers, monomers, chromophoric polymer dots and related methods are provided. Highly fluorescent chromophoric polymer dots with narrow-band emissions are provided. Methods for synthesizing the chromophoric polymers, preparation methods for forming the chromophoric polymer dots, and biological applications using the unique properties of narrow-band emissions are also provided.
Abstract:
Embodiments of the present invention relate to methods and apparatuses for the discretization and manipulation of sample volumes that is simple, robust, and versatile. It is a fluidic device that partitions a sample by exploiting the interplay between fluidic forces, interfacial tension, channel geometry, and the final stability of the formed droplet and/or discretized volume. These compartmentalized volumes allow for isolation of samples and partitioning into a localized array that can subsequently be manipulated and analyzed. The isolation of the discretized volumes along with the device's inherent portability render our invention versatile for use in many areas, including but not limited to PCR, digital PCR, biological assays for diagnostics and prognostics, cancer diagnosis and prognosis, high throughput screening, single molecule and single cell reactions or assays, the study crystallization and other statistical processes, protein crystallization, drug screening, environmental testing, and the coupling to a wide range of analytical detection techniques for biomedical assays and measurements. The minimal fluid interconnects and simple flow geometry makes the device easy to use and implement, economical to fabricate and operate, and robust in its operations.
Abstract:
Polymers, monomers, chromophoric polymer dots and related methods are provided. Highly fluorescent chromophoric polymer dots with narrow-band emissions are provided. Methods for synthesizing the chromophoric polymers, preparation methods for forming the chromophoric polymer dots, and biological applications using the unique properties of narrow-band emissions are also provided.
Abstract:
The present disclosure provides nanoparticle transducers and methods of use thereof for the detection of analyte concentrations in a fluid. Nanoparticle transducers can comprise a nanoparticle, such as a Pdot, coupled to an enzyme that catalyzes a reaction with the analyte. The nanoparticle transducers further comprise chromophores that emit fluorescence that varies as a function of the concentration of one of the elements of the reaction. The nanoparticle transducer thus changes fluorescence as the analyte concentration changes, transforming analyte concentration values into fluorescence intensities. The measurement of these intensities provides a measurement of the analyte concentration. The nanoparticle transducers are biocompatible, allowing for use in vivo, for the monitoring of analyte blood concentrations such as blood glucose concentrations.
Abstract:
Transducers, kits, systems, and methods for determining a concentration of an analyte are described. In an embodiment, the transducers include a chromophore; and an enzyme physically associated with the chromophore. In an embodiment, the transducer is configured to catalyze a reaction comprising a plurality of reaction elements. In an embodiment, the plurality of reaction elements comprises one or more reactants including the analyte and one or more products. In an embodiment, an amount of fluorescence emitted from the chromophore is determined by a concentration of a reaction element of the plurality of reaction elements.
Abstract:
Provided herein, among other aspects, are methods and apparatuses for analyzing particles in a sample. In some aspects, the particles can be analytes, cells, nucleic acids, or proteins and can be contacted with a tag, partitioned into aliquots, detected by a ranking device, and isolated. The methods and apparatuses provided herein may include a microfluidic chip. In some aspects, the methods and apparatuses may be used to quantify rare particles in a sample, such as cancer cells and other rare cells for disease diagnosis, prognosis, or treatment.
Abstract:
Provided herein, among other aspects, are methods and apparatuses for analyzing particles in a sample. In some aspects, the particles can be analytes, cells, nucleic acids, or proteins and contacted with a tag, partitioned into aliquots, detected by a ranking device, and isolated. The methods and apparatuses provided herein may include a microfluidic chip. In some aspects, the methods and apparatuses may be used to quantify rare particles in a sample, such as cancer cells and other rare cells for disease diagnosis, prognosis, or treatment.
Abstract:
The present invention provides, among other aspects, functionalized chromophoric polymer dots comprising a hydrophobic core and a hydrophilic cap, and bioconjugates thereof. Also provided are improved methods for preparing functionalized chromophoric polymer dots. Methods for in vivo imaging and molecular labeling are also disclosed.
Abstract:
Lyophilized chromophoric polymer dot compositions are provided. Also disclosed are methods of making and using the lyophilized compositions, methods of dispersing the lyophilized compositions in aqueous solutions and kits supplying the compositions.