Abstract:
A combination of filters for filtering selected wavelengths of electromagnetic radiation is provided on a transparent substrate such as a plastic film or glazing of a window. The combination of filters prevents or attenuates the passage of wavelengths through the substrate which would pose a security risk. The combination of filters is useful to prevent unauthorized data collection and information exchange from or within buildings or otherwise prevent such unauthorized data collection and information exchange from, for example, computer monitors or screens, personal digital assistance, and local area networks. The substrate with the combination of filters may be in the form of a bag or a tent.
Abstract:
Now, according to the present invention, functional coatings are provided that comprise both a porous inorganic layer and a polymeric filler. The porous inorganic layer comprises an inorganic material that can be formed into a layer at relatively low heat load. The polymeric filler fills the porosities in the porous inorganic layer, and can be, for example, wet coated onto the porous inorganic layer. The resulting functional coatings offer simpler and cheaper fabrication along with improved physical and optical performance.
Abstract:
A light curable anti-glare coating liquid composition for coating onto a transparent substrate, the composition comprising a dispersion of nanoparticles of a mineral oxide suspended in a mixture of an acrylate-functional resin that is compatible with the nanoparticle dispersion, compatible solvent, incompatible solvent that has a lower volatility than the compatible solvent, and a surfactant that has poor or limited compatibility with the dispersion.
Abstract:
The present invention provides an improved method for making a solar control sheet having one or more metal layers. In the prior art solar control sheets, each metal layer would normally be non-porous so that water vapor would not be readily transmitted therethrough. However, in this invention the metal layer is rendered porous because it is deposited on a porosity inducing surface. The porosity inducing surface may be the surface of a porous primer layer or a surface which has been roughened. Consequently when the solar control film of this invention is mounted on a window with a water based mounting media, the water can quickly evaporate through the film without causing undesirable cloudiness which is normally associated with water which becomes trapped between the film and the window.
Abstract:
A heat reflecting fenestration composite is provided which includes in sequence: (a) a substantially transparent substrate; (b) a first outer dielectric layer; (c) an infrared reflecting metal layer; (d) a color correcting metal layer comprising a metal different from the infrared reflecting metal layer; (e) a protective metal layer comprising a metal different from the infrared reflecting metal layer and different from the color correcting layer; and (f) a second outer dielectric layer. The dielectric layers are typically indium oxide, indium zinc oxide, indium tin oxide or mixtures thereof. Preferably, the composite also includes additional layers of infrared reflecting metal layer, color correcting metal, protective metal and dielectric. Also preferably, the composite comprises a top layer of glass or transparent polymeric plastic. The infrared reflecting metal layer is typically silver, gold, copper or alloys thereof. The color correcting metal layer typically has a refractive index in the visible light range between about 0.6 and about 4 and has an extinction coefficient for light in the visible light range between about 1.5 and about 7. Metals such as chromium, cobalt, nickel, zinc, palladium, indium, tin, antimony, platinum, bismuth and alloys thereof can be used in the color correcting metal layer, with indium being preferred. The protective metal layer is made from a metal whose oxide is substantially non-optically absorbing, such as aluminum, titanium, zirconium, niobium, hafnium, tantalum, tungsten and alloys thereof, with titanium being preferred. The color correcting and protective metal layers can also be disposed on both sides of the infrared reflecting metal layer. Such composites provide a heat reflecting fenestration structure having exception degradation resistant properties and visible light transmission reduction properties, without excessive reflectance.
Abstract:
An environmentally acceptable catalyst, coating system, and methods for thermal cure silicone release coatings that utilize bismuth (“Bi”) catalyst to retain properties of tin (“Sn”)-catalyzed systems but do not have the toxicity and environmental hazards associated therewith. The coating systems and methods also provide a laminate that shows reduced orange peel distortion over time compared with tin (“Sn”)-catalyzed systems and methods.
Abstract:
A transparent exterior window film composite comprising a base sheet material having an outer PET (polyethylene terephthalate) film layer which has been surface treated to elevate adhesion thereto and which is impregnated with an ultra violet light absorber (UVA), the treated surface being coated with a UV stabilized acrylic polymer or co-polymer undercoat having a UV stabilized hard coat layer thereon formed from at least one aliphatic urethane acrylate oligomer and at least one multifunctional acrylate monomer, the undercoat layer having a thickness which is at least as thick as the hard coat.
Abstract:
A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.
Abstract:
A modified silicone release coating suitable for use with clear, polymer films that shows reduced adherence when the resultant liner is wound up into large rolls and the smooth soft surfaces are placed into contact with each other. The adherence is reduced by providing a release layer which has a sub micro-rough top surface produced through the inclusion of a relatively small number of relatively large particles.
Abstract:
A low emissivity and EMI shielding transparent composite film typically for use in association with window glazing and comprising a transparent film substrate having on one side thereof an underlayer of abrasion resistant hardcoat material with at least one infrared reflective layer covering the underlayer, typically a metallic layer which may be encased in metal oxide layers, which is then covered with a thin external protective top coat of a cured fluorinated resin.