Abstract:
A probe card assembly can include a plurality of probes disposed on a substrate and arranged to contact terminals of a semiconductor wafer. Switches can be disposed on the probe card assembly and provide for selective connection and disconnection of the probes from electrical interconnections on the probe card assembly.
Abstract:
Embodiments of probe cards and methods for fabricating and using same are provided herein. In some embodiments, an apparatus for testing a device (DUT) may include a probe card configured for testing a DUT; a thermal management apparatus disposed on the probe card to heat and/or cool the probe card; a sensor disposed on the probe card and coupled to the thermal management apparatus to provide data to the thermal management apparatus corresponding to a temperature of a location of the probe card; a first connector disposed on the probe card and coupled to the thermal management apparatus for connecting to a first power source internal to a tester; and a second connector, different than the first connector, disposed on the probe card and coupled to the thermal management apparatus for connecting to a second power source external to the tester.
Abstract:
A probe card assembly can include a wireless link to an external verifier (e.g., debugger). The wireless link can interface to a boundary scan interface of a controller on the probe card assembly. The wireless link can allow for verification of the probe card assembly while it is installed within a prober.
Abstract:
Embodiments of the present invention provide microelectromechanical systems (MEMS) switching methods and apparatus having improved performance and lifetime as compared to conventional MEMS switches. In some embodiments, a MEMS switch may include a resilient contact element comprising a beam and a tip configured to wipe a contact surface; and a MEMS actuator having an open position that maintains the tip and the contact surface in a spaced apart relation and a closed position that brings the tip into contact with the contact surface, wherein the resilient contact element and the MEMS actuator are disposed on a substrate and are movable in a plane substantially parallel to the substrate. In some embodiments, various contact elements are provided for the MEMS switch. In some embodiments, various actuators are provided for control of the operation of the MEMS switch.
Abstract:
Methods and apparatus for processing failures during semiconductor device testing are described. Examples of the invention can relate to testing a device under test (DUT). Fail capture logic can be provided, coupled to test probes and memory, to indicate only first failures of failures detected on output pins of the DUT during a test for storage in the memory.
Abstract:
Methods and apparatus for testing devices using serially controlled intelligent switches have been described. In some embodiments, a probe card assembly can be provided that includes a plurality of integrated circuits (ICs) serially coupled to form a chain, the chain coupled to at least one serial control line, the plurality of ICs including switches coupled to test probes, each of the switches being programmable responsive to a control signal on the at least one serial control line.
Abstract:
One or more customization layers can be added to a wiring substrate. The customization layers can provide customized electrical connections from electrical contacts of the base wiring substrate to electrical contacts at an outer surface of the customization layers, which can allow the contacts at the outer surface of the customization layers can be in a different pattern than the contacts at the surface of the base wiring substrate. The customization layers can comprise electrically insulating material, electrically conductive via structures through the insulating material, electrically conductive traces, electrically conductive jumpers electrically connecting two traces without contacting a trace disposed between the two traces, and/or other such elements. A jumper can be formed by making a relatively small deposit of electrically insulating material between the two traces to be connected and then making a relatively small deposit of electrically conductive material on parts of the two traces and the insulating material. Via structures can be coupled to traces and an insulating material can be cast around the via structures. Alternatively, via structures can be formed in openings with sloped side walls in an insulating layer.
Abstract:
Wafer cassette systems and methods of using wafer cassette systems. A wafer cassette system can include a base and a probe card assembly. The base and the probe card assembly can each include complementary interlocking alignment elements. The alignment elements can constrain relative movement of the base and probe card assembly in directions parallel to a wafer receiving surface of the base, while permitting relative movement in a direction perpendicular to the receiving surface.
Abstract:
Devices under test (DUTs) can be tested in a test system that includes an aligner and test cells. A DUT can be moved into and clamped in an aligned position on a carrier in the aligner. In the align position, electrically conductive terminals of the DUT can be in a predetermined position with respect to carrier alignment features of the carrier. The DUT/carrier combination can then be moved from the aligner into one of the test cells, where alignment features of the carrier are mechanically coupled with alignment features of a contactor in the test cell. The mechanical coupling automatically aligns terminals of the DUT with probes of the contactor. The probes thus contact and make electrical connections with the terminals of the DUT. The DUT is then tested. The aligner and each of the test cells can be separate and independent devices so that a DUT can be aligned in the aligner while other DUTs, having previously been aligned to a carrier in the aligner, are tested in a test cell.
Abstract:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.