Abstract:
A thermoelectric device is provided which is good in terms of responsibility to heat, by which a relatively large electric power can be produced, which is good in terms of durability, and which can be manufactured at reduced cost. The thermoelectric device includes a substrate having a thickness of 2.0 mm or less, and a thick-film type thermoelectric material formed on the substrate, and having a thickness of from 0.01 mm to 1.0 mm. The thick-film type thermoelectric material is covered with a glassy coating. By the coating, the thick-film type thermoelectric material is inhibited from coming off, and from deteriorating oxidatively.
Abstract:
A thermoelectric semiconductor material comprises Si crystal and crystal of metal silicide selected from the group consisting of Fe, Co, Cr, Mn and Ni. It is preferable that the metal silicide is .beta.-FeSi.sub.2. Moreover, the thermoelectric semiconductor material further contains at least one element selected from the group consisting of Vb, VIb, IIIb, VIII, VIIa and VIa in the atomic periodic table as an additive. This element can be used as a dopant. Furthermore, since both the phase of the Si crystal and the phase of the crystal of the metal silicide are changed to be an n-type or a p-type, a thermoelectric characteristics are improved.
Abstract:
On the ground, a plurality of primary power supply transformers are separately installed with a longitudinal direction of magnetic poles matching a vehicle traveling direction. The primary power supply transformers each include a double-sided coil with an H-shaped core around which a wire is wound. On a vehicle, a secondary power supply transformer including an H-shaped core is mounted with a longitudinal direction of magnetic poles matching a vehicle front-back direction. The distance between the primary power supply transformers is set such that the distance between the centers of the magnetic poles of the neighboring primary power supply transformers does not exceed 3D where D represents the size of the magnetic poles.
Abstract:
A contactless power transfer transformer includes main body. The main body includes magnetic pole core members, winding wire core member, and wire. The winding wire core member is orthogonal to the magnetic pole core members and connects one portion of each of the pair of parallel magnetic pole core members with each other. The main body is fixed to fixing plate having a magnetic shield function and heat dissipation function. The connecting position of the winding wire core member with respect to the magnetic pole core members is located toward one side from a center in the longitudinal direction of the magnetic pole core members. At least a space between the pair of the magnetic coil core members each containing an end portion longer in distance to the connecting position is used as an arrangement space of component electrically connected to the electric wire.
Abstract:
A contactless power transfer core used for a power transmission coil or a power reception coil of a contactless power transfer apparatus includes: a winding core part wound by an electric wire; and a magnetic pole core part constituting a magnetic pole portion provided at both sides of the winding core part. A height of the uppermost part of a ferrite plate arranged on a face of the magnetic pole core part at a side opposing a counterpart coil is equal to or greater than a height of an outer circumference of the electric wire wound around the winding core part, and a height of the ferrite plate of a face at a side not opposing the counterpart coil is lower than the height of the outer circumference of the electric wire wound around the winding core.
Abstract:
Provided is a contactless power transfer device for a moving object. Each of a power transmission coil and a power receiving coil comprises an H-shaped core, and first, second and third search coils are installed on a magnetic pole object of the H-shaped core of the power transmission coil. A y-direction positional deviation between the power transmission coil and the power receiving coil is detected using voltages measured at the first and second search coils, and an x-direction positional deviation is detected using voltages measured at the third search coils.
Abstract:
In an example of a system, power is transferred from a transmission coil to a reception coil by electromagnetic induction. A detecting unit calculates a difference between a standard value and a measured value, detects presence of a metallic foreign object on the transmission coil based on the difference, and outputs a signal when the metallic foreign object is detected. The standard value is obtained by supplying electrical power to the transmission coil when a metallic foreign object is absent on the transmission coil. The measured value is obtained by supplying electrical power to the transmission coil. If PIN0 represents input power of the transmission coil, PL0 represents output power of the reception coil, Pc1 represents copper loss of the transmission coil, and Pc2, represents copper loss of the reception coil, the detecting unit uses a value expressed by (PIN0-PL0-Pc1-Pc2) as the standard value and the measured value.
Abstract:
A contactless power transfer core used for a power transmission coil or a power reception coil of a contactless power transfer apparatus includes: a winding core part wound by an electric wire; and a magnetic pole core part constituting a magnetic pole portion provided at both sides of the winding core part. A height of the uppermost part of a ferrite plate arranged on a face of the magnetic pole core part at a side opposing a counterpart coil is equal to or greater than a height of an outer circumference of the electric wire wound around the winding core part, and a height of the ferrite plate of a face at a side not opposing the counterpart coil is lower than the height of the outer circumference of the electric wire wound around the winding core.
Abstract:
A thermoelectric apparatus is composed of a heat-absorbing-side heat-exchanging base and a heat-dissipating-side heat-exchanging base having good thermal conductivity and arranged in a mutually opposing relationship with a group of thermoelectric elements interposed therebetween. The thermoelectric apparatus comprises a frame made of a synthetic resin material and holding one of the heat-absorbing-side heat-exchanging base and the heat-dissipating-side heat-exchanging base at an outer peripheral portion thereof. The frame and the other heat-exchanging base, which is not held by the frame, are both provided with extended portions extending substantially along and substantially in the same direction as a stacked direction of the heat-absorbing-side heat-exchanging base, the group of thermoelectric elements and the heat-dissipating-side heat-exchanging base. The extended portions are joined together.
Abstract:
There are provided a gaseous-diffusion electrode which can exhibit sufficient gas-supplying ability and gas-discharging ability and an excellent durability even when partly immersed in an electrolysis solution; and an electrochemical reactor using the gaseous-diffusion electrode. A porous membrane 15 which is permeable to gas but not to an electrolysis solution is fixed to the surface of the gaseous-diffusion layer 13 of a gaseous-diffusion electrode 11 obtained by joining a reaction layer 12 supporting a catalyst metal and a gaseous-diffusion layer 13 to each other, so as to cover the surface of the gaseous-diffusion layer 13. When a gas passageway member 17 serving as gas passageway to the gaseous-diffusion layer 13 is inserted between the surface of the gaseous-diffusion layer 13 and the porous membrane 15, the gas-supplying ability and the gas-discharging ability becomes greatly improved. When an electrochemical reactor is composed by immersing the thus composed gaseous-diffusion electrode partly in an electrolysis solution in a pressure vessel composed of a closed vessel, electrolysis or the like can be continuously carried out.