摘要:
An apparatus for reducing ventilation induced diaphragm disuse in a patient receiving ventilation support from a mechanical ventilator (MV), including: an electrode array of first and second types and comprising a plurality of electrodes configured to stimulate a phrenic nerve of the patient; and at least one controller configured to: identify a type of electrode array from at least two different types, generate a stimulus signal for stimulating a phrenic nerve of the patient based upon the identity of the electrode type.
摘要:
A device, a process and a computer program, pertaining to a determination of situations during breathing or during a ventilation are described. Concepts for obtaining, detecting or determining information are described. The information, for example, is information concerning the respiratory muscles of the patient, concerning a load-bearing capacity of a patient, concerning a need for breathing assistance and also concerning the possibilities of adequately assisting the breathing by stimulation are very valuable in the treatment and therapy of living beings or patients.
摘要:
An apparatus for reducing ventilation induced diaphragm disuse in a patient receiving ventilation support from a mechanical ventilator (MV), including: an electrode array of first and second types and comprising a plurality of electrodes configured to stimulate a phrenic nerve of the patient; and at least one controller configured to: identify a type of electrode array from at least two different types, generate a stimulus signal for stimulating a phrenic nerve of the patient based upon the identity of the electrode type.
摘要:
A controller or processor(s) implements detection of respiratory related conditions, such as asynchrony, associated with use of a respiratory treatment apparatus or ventilator. Based on data derived from sensor signals associated with the respiratory treatment, the detector may evaluate a feature set of detection values to determine whether or not an asynchrony occurs in a breath of the patient's respiratory cycle such as by comparing the values against a set of thresholds. Different events may also be identified based on the particular feature set and threshold(s) involved in the detection processing. Automated determination of feature sets may also be implemented to design different asynchrony event classifiers. The methodologies may be implemented by computers or by respiratory treatment apparatus. The detection of such asynchrony events can then also serve as part of control logic for automated adjustments to the control parameters of the respiratory treatment generated by the respiratory treatment apparatus.
摘要:
A ventilatory assist system and method are disclosed. The system comprises a tube for connection to a patient's airway, inspiratory and expiratory tube lumens connected to the tube, an inspiratory air source connected to the inspiration tube lumen, and a controller of air pressure in the expiratory tube lumen. The pressure controller is responsive to a physiological breathing signal representative of patient's inspiratory effort to allow air flow through the expiratory tube lumen during a patient's expiration phase, partially restricting the air flow through the expiratory tube lumen to a so minimum air flow during a patient's inspiration phase. During both respiratory phases, a unidirectional air flow is produced through the inspiratory and expiratory tube lumens to prevent air expired by the patient from being breathed again. The physiological breathing signal allows synchronization of the ventilatory assist with breathing efforts of the patient.
摘要:
In a method for positioning linear array of electrodes (LAE) mounted on distal end section of elongated flexible member in patient's respiratory airways (PRA) at level of diaphragm, a length of the member pre-determined to position LEA at the level of the diaphragm is inserted through PRA. Signals representative of an electrical activity of the diaphragm (EAdi) are detected through LAE, presence/absence of ECG signal components is detected in EAdi signals, and position of LAE in PRA is detected in response to presence/absence of ECG signal components in EAdi signals. Lower esophageal sphincter activity may be detected in EAdi signals, and position of LAE in PRA determined in response to the detected lower esophageal sphincter. End-expiratory occlusion of PRA may be performed to verify that the electrical activity of the diaphragm coincides with a negative deflection of PRA pressure again in view of determining adequate positioning of LAE.
摘要:
A diaphragm assist device includes a magnetic mat adapted for mounting inside a human body adjacent the diaphragm. The mat is made from a material responsive to application of an electromagnetic field so as to be movable into compressive relation with the diaphragm in response to application of the electromagnetic field thereto and movable out of the compressive relation to permit the diaphragm to relax when application of the electromagnetic field is discontinued. The device also includes an electromagnetic assembly adapted for surrounding the torso of the human body in functionally cooperative relation with respect to the mat, and for alternately generating and discontinuing the electromagnetic field so that the mat alternately moves into and out of the compressive relation with the diaphragm. The device also includes a controller constructed and arranged to control an intensity level of the electromagnetic field generated by the electromagnetic assembly.
摘要:
This disclosure describes systems and methods for monitoring ventilatory parameters, analyzing ventilatory data associated with those parameters, and providing useful notifications and/or recommendations to clinicians. For example, many clinicians may not easily identify or recognize data patterns and correlations indicative of a fluctuation in resistance during mechanical ventilation of a patient. Furthermore, clinicians may not easily determine potential causes for the fluctuation in resistance and/or steps for mitigating the fluctuation in resistance. According to embodiments, a ventilator may be configured to monitor and evaluate diverse ventilatory parameters to detect fluctuations in resistance and may issue suitable notifications and recommendations to the clinician based on potential causes of the fluctuation, ventilatory and/or patient data, etc. The suitable notifications and recommendations may further be provided in a hierarchical format such that the clinician may selectively access information regarding the fluctuation in resistance.
摘要:
This disclosure describes systems and methods for monitoring and evaluating ventilatory parameters, analyzing ventilatory data associated with those parameters, and providing useful notifications and/or recommendations to clinicians. Modern ventilators monitor, evaluate, and graphically represent a myriad of ventilatory parameters. However, many clinicians may not easily identify or recognize data patterns and correlations indicative of certain patient conditions, changes in patient condition, and/or effectiveness of ventilatory treatment. Further, clinicians may not readily determine appropriate ventilatory adjustments that may address certain patient conditions and/or the effectiveness of ventilatory treatment. Specifically, clinicians may not readily detect or recognize the presence of Auto-PEEP during various types of pressure ventilation. According to embodiments, a ventilator may be configured to monitor and evaluate diverse ventilatory parameters to detect Auto-PEEP and may issue suitable notifications and recommendations to the clinician when Auto-PEEP is implicated. The suitable notifications and recommendations may further be provided in a hierarchical format.
摘要:
A control unit for a ventilator is arranged to receive, from each of a number of electrode pairs on an esophageal catheter a bioelectric signal having an ECG component. The control unit has a calculating unit that determines the ECG component of each of the bioelectric signals and a position unit that determines the position of the catheter in relation to the patient's diaphragm based on a comparison the amplitudes of ECG components of the bioelectric signals.