Abstract:
A dual bed pyrolysis system may include a falling bed reactor employing a heat carrier particulate to pyrolyze biomass to create a pyrolysis product and a pyrolysis waste product. The dual bed pyrolysis system may also include a fluidized bed reactor. The fluidized bed reactor may accept the pyrolysis waste product including char and heat carrier particulate from the falling bed reactor. The fluidized bed reactor may combust the char in the presence of the heat carrier particulate. The fluidized bed reactor may combust the char to reheat the heat carrier particulate. The reheated heat carrier particulate may be provided to the falling bed reactor to pyrolyze biomass to create a pyrolysis product and a pyrolysis waste product.
Abstract:
A process for polymerizing olefins in at least two serially connected gas-phase polymerization reactors, the process for transferring polyolefin particles from a first gas-phase polymerization reactor to a second gas-phase polymerization reactor comprising the steps of: a) discharging polyolefin particles into a separation chamber being at a lower pressure than the pressure in the first reactor; b) transferring the polyolefin particles within the separation chamber into a lower part which contains a bed of polyolefin particles which moves from top to bottom of this part of the separation chamber and into which a fluid is introduced so that an upward fluid stream is induced, c) withdrawing polyolefin particles from the lower end and transferring them to one of at least two lock hoppers working intermittently in parallel; and d) simultaneously pressurizing another of the at least two lock hoppers working intermittently by means of a gas comprising reaction gas coming from the second reactor.
Abstract:
The apparatus herein provide a catalyst cooler with a vent that communicates fluidizing gas to a lower chamber of a regenerator. Air that is used as fluidizing gas can then be consumed in the regenerator without promoting after burn in the upper chamber.
Abstract:
Embodiments of apparatuses and methods for controlling heat for rapid thermal processing of carbonaceous material are provided herein. The apparatus comprises a reheater for containing a fluidized bubbling bed comprising an oxygen-containing gas, inorganic heat carrier particles, and char and for burning the char into ash to form heated inorganic particles. An inorganic particle cooler is in fluid communication with the reheater to receive a first portion of the heated inorganic particles. The inorganic particle cooler is configured to receive a cooling medium for indirect heat exchange with the first portion of the heated inorganic particles to form first partially-cooled heated inorganic particles that are fluidly communicated to the reheater and combined with a second portion of the heated inorganic particles to form second partially-cooled heated inorganic particles. A reactor is in fluid communication with the reheater to receive the second partially-cooled heated inorganic particles.
Abstract:
A method for deep desulfurization of synthesis gas comprising introducing carbonaceous material and optionally steam into a gasifier comprising a heat transfer media, extracting a first heat transfer stream comprising heat transfer media and optionally unconverted carbonaceous material from the gasifier, and introducing at least a portion of the first heat transfer stream into a combustor, introducing oxidant and optionally a fuel into the combustor, extracting a second heat transfer stream comprising heat transfer media from the combustor, and introducing at least a portion of the second heat transfer stream into the gasifier, introducing a compound capable of reacting with sulfur to produce sulfate, sulfide or both, extracting a purge stream comprising ash, sulfate, halide, or a combination thereof from the second heat transfer stream, extracting a flue gas from the combustor, and extracting a gasifier product synthesis gas stream comprising less than 1000 ppm sulfur from the gasifier.
Abstract:
A solid/heat-transport and reactive gas reactor, including: a helical duct including an inlet and an outlet, the helical duct defining a helical bottom track on which a solid reagent can slide from the inlet to the outlet of the helical duct; a mechanism for bringing the solid reagent to the inlet of the helical duct; a mechanism for causing a heat-transport gas to flow in the helical duct, from the outlet to the inlet of the helical duct; a reservoir of solid reagent under the outlet of the helical duct; and a conveyor for conveying the reagent from a low point of the reservoir to the bringing mechanism.