Abstract:
Embodiments of the present invention include methods and compositions related to catabolic conversion of cellulosic biomass to glycolic acid using molybdenum-containing acidic catalysts. The invention includes the use of heteropoly and isopoly acids and salts as the molybdenum-containing multi-functional catalysts for biomass conversion. In embodiments of the invention, the reactions employ successive hydrolysis, retro-aldol fragmentation, and selective oxidation in a noble metal-free system.
Abstract:
Disclosed herein are mixed oxide catalysts for the catalytic gas phase oxidation of alkanes, or mixtures of alkanes and olefins, for the production of aldehydes and carboxylic acids with air or oxygen in the presence of inert gases at elevated temperatures and pressure, and a method for the production of catalysts.
Abstract:
A method of hydrothermal hydrocatalytic treating biomass is provided. Lignocellulosic biomass solids is provided to a hydrothermal digestion unit in the presence of a digestive solvent, and a supported hydrogenolysis catalyst containing (a) sulfur, (b) Mo or W, and (c) Co, Ni or mixture thereof, incorporated into a group 4 metal oxide support; (ii) heating the lignocellulosic biomass solids and digestive solvent in the presence of hydrogen, and the supported hydrogenolysis catalyst thereby forming a product solution containing plurality of oxygenated hydrocarbons, said catalyst retaining a crush strength of at least 50% after being subjected to an aqueous phase stability test compared with before the aqueous phase stability test or a crush strength of at least 0.25 kg after being subjected to an aqueous phase stability test.
Abstract:
A catalyst for the oxidation of an olefin to an unsaturated aldehyde comprising a mixed metal oxide having the formula (I): MoaWbMcM′dM″eZfOg (I) where M represents trivalent metals, M′ represents divalent metals, M″ represents monovalent metals, Z represents elements in the form of an oxide, a, b, c, d, e, f and g are numbers, and where the catalyst has an anion to cation molar (ACM) ratio greater than 1.00 and less than 2.00 and an M′ to M molar ratio between 1.95 and 2.15.
Abstract:
A self activating catalyst for treating heavy hydrocarbon feedstocks that comprises a calcined particle comprising a co-mulled mixture made by co-mulling inorganic oxide powder, molybdenum trioxide powder, and a nickel compound and then forming the co-mulled mixture into a particle that is calcined to thereby provide the calcined particle. The calcined particle comprises from 1 to 10 weight percent molybdenum and nickel that is present in an amount such that the weight ratio of said nickel-to-molybdenum is less than 0.4. The calcined particle has a pore size distribution that contributes to the unique properties of the catalyst. The calcined particle and catalyst also exhibits a unique Raman spectrum. The self activating catalyst is activated when contacted under suitable process conditions with a heavy residue feedstock having high nickel, vanadium and sulfur concentrations.
Abstract:
Catalyst support materials, catalysts, methods of making such and uses thereof are described. Methods of making catalyst support material include combining anatase titania slurry with i) a low molecular weight form of silica; and ii) a source of Mo to form a TiO2—MoO3—SiO2 mixture. Catalyst support material include from about 86% to about 94% weight anatase titanium dioxide; from about 0.1% to about 10% weight MoO3; and from about 0.1% to about 10% weight SiO2. Low molecular weight forms of silica include forms of silica having a volume weighted median size of less than 4 nm and average molecular weight of less than 44,000, either individually or in a combination of two or more thereof. Catalyst include such catalyst support material with from about 0.1 to about 3% weight of V2O5 and optionally from about 0.01% to about 2.5% weight P.
Abstract:
A method of making a high activity catalyst composition suitable for use in the hydrodesulfurization of a middle distillate feed, such as diesel fuel, having a high concentration of sulfur, to thereby provide a low sulfur middle distillate product. The method comprises heat treating aluminum hydroxide under controlled temperature conditions thereby converting the aluminum hydroxide to gamma-alumina to give a converted aluminum hydroxide, and controlling the fraction of converted aluminum hydroxide that is gamma-alumina. A catalytic component is incorporated into the converted aluminum hydroxide to provide an intermediate, which is heat treated to provide the high activity catalyst composition. The high activity catalyst composition can suitably be used in the hydrodesulfurization of a middle distillate feed containing a high sulfur concentration.
Abstract:
The present disclosure relates to methods for converting light glycol streams of biological origin into products suitable for use as oxygenated fuel additives. These methods involve the acidic condensation of light glycols to form larger products, termed low molecular weight poly-glycols. The remaining hydroxyl functional groups of the poly-glycol products are then modified to decrease the overall polarity of the products, and improve their suitability for use as an oxygenated fuel additive.
Abstract:
Described is a catalyst and process useful in the hydrodesulfurization of a distillate feedstock to manufacture a low-sulfur distillate product. The catalyst comprises a calcined mixture of inorganic oxide material, a high concentration of a molybdenum component, and a high concentration of a Group VIII metal component. The mixture that is calcined to form the calcined mixture comprises molybdenum trioxide in the form of finely divided particles, a Group VIII metal compound, and an inorganic oxide material. The catalyst is made by mixing the aforementioned starting materials and forming therefrom an agglomerate that is calcined to yield the calcined mixture that may be used as the catalyst or catalyst precursor.
Abstract:
Disclosed is a method of gas purification, a coal gasification plant, and a shift catalyst, each of which enables an inexpensive treatment of condensed water derived from steam used in a CO shift reaction. A CO shift reaction is performed using a shift catalyst less causing side reactions (e.g., a P—Mo—Ni-supported shift catalyst), and condensed water derived from steam used in the CO shift reaction is reused or treated. The method includes a cleaning step of removing water-soluble substances from a gasified gas containing CO and H2S; a CO shift step of allowing CO in a gas after the cleaning step to react with steam by the catalysis of the shift catalyst to convert CO into CO2 and H2; and a recovery step of removing CO2 and H2S from a gas after the CO shift step, in which post-shift condensed water formed after the CO shift step is recycled.