Abstract:
A new paintable rubber composition made of a special formulation of materials including, for example, an SBR rubber elastomer and a thermoplastic polymeric stiffening agent means which may be used to provide the cured composition with a high flex modulus; and a new method of manufacturing a special flexible painted rubber product comprising molding, curing and painting said product.
Abstract:
A composite includes a substrate, a binder layer disposed on a surface of the substrate; and a nanofiller layer comprising nanographene and disposed on a surface of the binder layer opposite the substrate. In addition, a nano-coating layer for coating a substrate includes multiple alternating layers of the binder layer and the nanofiller layer. Articles coated with the nano-coating layer prepared from alternating layers of nanofiller layer and binder layer have improved barrier properties, and may be used in down-hole applications.
Abstract:
A composite includes a substrate, a binder layer disposed on a surface of the substrate; and a nanofiller layer comprising nanographene and disposed on a surface of the binder layer opposite the substrate. In addition, a nano-coating layer for coating a substrate includes multiple alternating layers of the binder layer and the nanofiller layer. Articles coated with the nano-coating layer prepared from alternating layers of nanofiller layer and binder layer have improved barrier properties, and may be used in down-hole applications.
Abstract:
The invention relates to a process for the preparation of a composite material, said composite material comprising a substrate and a layer on the substrate, comprising a vapor-depositing step in which a compound comprising a triazine compound is deposited on the substrate at a pressure below 1000 Pa, whereby the layer is formed, wherein during the vapor-depositing step the temperature of the substrate lies between −15 ° C. and +125 ° C. The invention further relates to a composite material, obtainable by the process as disclosed.
Abstract:
The invention relates to a process for the production of strongly adherent coatings on an inorganic or organic substrate, wherein in a first step a) a low-temperature plasma, a corona discharge or a flame is caused to act on the inorganic or organic substrate, in a second step b) one or more defined photoinitiators or mixtures of defined photoinitiators with monomers, containing at least one ethylenically unsaturated group, or solutions, suspensions or emulsions of the afore-mentioned substances, are applied, preferably at normal pressure, to the inorganic or organic substrate, in a third step c) using suitable methods those afore-mentioned substances are dried and/or irradiated with electromagnetic waves and, optionally, in a fourth step d) on the substrate so pretreated is applied a further coating.
Abstract:
Process for the preparation of a composition comprising a biofunctional polymer substrate and biofunctional material substrate adapted for use in or in association with the human or animal body, cultivated or uncultivated living matter, wherein the biofunctional material substrate is substantially insoluble in the polymer substrate and/or a supercritical fluid, wherein the process comprises contacting a mixture of the substrates or their precursors with a supercritical fluid under supercritical conditions and conditions of reduced viscosity and physical blending to plasticise and swell the polymer and distribute the biofunctional material substrate throughout the polymer, and releasing the fluid under subcritical conditions, wherein the substrates are adapted to be isolated in form of a solid admixture comprising the biofunctional material substrate in substantially unchanged chemical form, and in substantially unchanged physical form, composition obtained thereby, polymer matrix embodiment thereof and the process for its preparation.
Abstract:
A method of depositing a functional group on a surface portion of an elastic substrate comprises the steps of: (a) stretching an elastic substrate having an initial surface portion to form an enlarged surface portion from the initial surface portion; then (b) conjugating a functional group on the enlarged surface portion; and then (c) releasing the substrate to form a reduced surface portion from the enlarged surface portion, with the reduced surface portion having an area less than the enlarged surface portion, and with the reduced surface portion having the functional group deposited therein at a greater density than the enlarged surface portion.
Abstract:
The method of treating a surface chemically by exposing the surface to a treating gas at high pressure for a time during which a surface reaction occurs, and then reducing the pressure of the gas for a time and removing reaction byproducts and then continuing the cycles of high pressure and low pressure until the surface reaction is completed.
Abstract:
Surfaces of articles formed from (1) normally solid polymers of aliphatic mono-1-olefins and (2) elastomeric and resinous polymers of conjugated dienes and vinyl-substituted aromatic compounds are conditioned by contact with a fluorine-containing gas under conditions and for a period of time sufficient to render the surface receptive to adhesives, coatings, paints, inks, decorations, and the like. The fluorine-containing gas can be pure or admixed with up to about 99 volume percent inert gas.