Abstract:
The invention relates to a method of adjusting an electronic stability program (ESP) for a motor vehicle. This method comprises various steps, including in particular: establishing the curve of the consumption values (Cesp) as a function of time, said curve being representative of the differences (dCM) of the measured yaw angles and the setpoint yaw angles (dCM=LM−LC) versus the measured triggering threshold values (St), modifying the nominal threshold values (Sv) by a percentage that is proportional to the consumption values (Cesp).
Abstract:
The invention relates to a method of adjusting an electronic stability program (ESP) for a motor vehicle. This method comprises various steps, including in particular: establishing the curve of the consumption values (Cesp) as a function of time, said curve being representative of the differences (dCM) of the measured yaw angles and the setpoint yaw angles (dCM=LM−LC) versus the measured triggering threshold values (St), modifying the nominal threshold values (Sv) by a percentage that is proportional to the consumption values (Cesp).
Abstract:
Improved methods of controlling the stability of a vehicle are provided via the cooperative operation of vehicle stability control systems such as an Active Yaw Control system, Antilock Braking System, and Traction Control System. These methods use recognition of road surface information including the road friction coefficient (mu), wheel slippage, and yaw deviations. The methods then modify the settings of the active damping system and/or the distribution of drive torque, as necessary, to increase/reduce damping in the suspension and shift torque application at the wheels, thus preventing a significant shift of load in the vehicle and/or improving vehicle drivability and comfort. The adjustments of the active damping system or torque distribution temporarily override any characteristics that were pre-selected by the driver.
Abstract:
The invention relates to a method of adjusting an electronic stability program (ESP) for a motor vehicle. This method comprises various steps, including in particular: establishing the curve of the consumption values (Cesp) as a function of time, said curve being representative of the differences (dCM) of the measured yaw angles and the setpoint yaw angles (dCM=LM−LC) versus the measured triggering threshold values (St), modifying the nominal threshold values (Sv) by a percentage that is proportional to the consumption values (Cesp).
Abstract:
A method of and system for detecting absolute acceleration along various axes relative to a desired movement vector while moving relative to a gravity source includes steps of determining a vertical acceleration, perpendicular to the desired movement vector and substantially anti-parallel to a gravitational acceleration due to the gravity source; determining a longitudinal acceleration, parallel to the desired movement vector and to output at vertical acceleration signal and a longitudinal acceleration signal; determining an inclination of the desired movement vector relative to the gravitational acceleration; and processing the vertical acceleration signal, the longitudinal acceleration signal, and the inclination signal to produce an absolute vertical acceleration signal and an absolute longitudinal acceleration signal.
Abstract:
To monitor chassis functions and chassis components of a motor vehicle and/or to detect wear, wear trends, component defects or declining functions, information provided by control systems mounted in the vehicle and/or obtained by way of additional sensors is evaluated. Evaluations relating to vehicle dynamics are carried out on the basis of said information, with reproducible vehicle or driving conditions, and taken into account in order to statistically evaluate specific features, which directly or indirectly reflect chassis functions and/or the condition of chassis components, and to subsequently identify defects or malfunctions.
Abstract:
A control system for a vehicle having an electronically actuated drive train includes a coordination level which is assigned to a system control device, and in which setpoint values are generated from state variables (ZG) of the vehicle and from driver's requests. Actuation signals for actuating actuators are generated from the latter. An execution level, which is subordinate to the coordination level, has actuators for executing the actuation signals. An axle electronic module for activating at least one brake actuator which is assigned to the chassis is arranged in the region of the steerable vehicle axle. The axle electronic module is connected to the coordination level in order to receive transmittal setpoint values, and determines actuation signals for actuating the respective axle actuator from the setpoint values. The axle electronic module is connected to an electronically actuated steering system for transmitting the actuation signals.
Abstract:
A yaw stability control system (18) is enhanced to include roll stability control function for an automotive vehicle and includes a plurality of sensors (28-39) sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the vehicle from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.
Abstract:
The invention relates to an anti-lock braking system as well as to a method of operating the anti-lock braking system. As a function of the motional state of at least one wheel control commands are generated for at least one actuator (12) of the anti-lock braking system. During generation of the control commands a quantity characteristic of the vertical tyre force is taken into account.
Abstract:
A method and a device for influencing the handling characteristics of a vehicle, by increasing the vehicle stability and hence increasing the driving comfort for the driver of the vehicle. This is done by activating at least two systems in the vehicle, which improve the handling characteristics and thus the vehicle stability. The activation of a system occurs in a specified sequence as a function of the activation and/or of the effect of the preceding systems on the handling characteristics achieved by the activation. The sequence provided for this purpose is the initial activation of a chassis system, followed by a steering system and finally by a brake system.