Abstract:
Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The CTE of the fine-grained metallic coating is matched to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
Abstract:
A bumper molding is fabricated by disposing segmented anodes 31 and 32 on surfaces 22 and 24 of a base material 20, which are to be plated, and performing electroplating so as to form metal films on the surfaces 22 and 24, respectively. The curvature of a surface of a concave portion, which is formed in each part of the surfaces 22 and 24 so that the surface of the concave portion is away from the segmented anodes 31 and 32, respectively, is larger than those of other portions at a part serving as a border between the second plated surface 22 and the fourth plated surface 24. Accordingly, the distance from the part serving as the border between the second plated surface 22 and the fourth plated surface 24 to a metal case 50a corresponding to this part is set so as to be shorter than those from each of the other parts to the metal cases 50a and 50b respectively corresponding to the segmented anodes 31 and 32.
Abstract:
Provided is a copper foil for a printed circuit with an electrodeposited ternary-alloy layer composed of copper, cobalt and nickel formed on a surface of the copper foil, wherein the electrodeposited layer comprises dendritic particles grown on the copper foil surface, and the entire surface of the copper foil is covered with particles having an area as seen from above the copper foil surface of 0.1 to 0.5 μm2 at a density of 1000 particles/10000 μm2 or less, particles exceeding 0.5 μm2 at a density of 100 particles/10000 μm2 or less, and particles less than 0.1 μm2 as the remainder. Roughening particles formed dendritically in a roughening treatment based on copper-cobalt-nickel alloy plating are inhibited from shedding from the copper foil surface, and the phenomenon known as powder falling and uneven treatment are thereby inhibited.
Abstract:
A process and method is described for the deposition of the enhanced chemical and electrochemical activity layers essential for the operation of a battery, fuel cell or other electrochemical devices like sensors.A precise and well-calibrated combination of agents with specific values, like exterior electric fields (direct current (d.c.), alternative current (a.c.), variable magnetic fields, and acoustic/elastic fields are used in tailoring of interface properties essential for the operation of the device with enhanced properties.This invention describes processes for doping the active interfaces in electrodes, leading to the enhancement of properties and to an increased degree of control via a synergistic combination of (any of the following): direct current (d.c.) field, variable alternative current (a.c.) field, variable acoustic/elastic field, variable magnetic field and a variation of the partial pressure of oxygen and/or other gases in the interior of the electrode deposition reactor.This invention describes processes that achieve a combination of graded functionality and graded porosity ideal for the enhancement of the operation of batteries, fuel cells and electrochemical reactors, characterized by improved figures of merit.
Abstract:
An apparatus for electroplating one or more surfaces (2,3) on one or more substrates (1), especially solar cells (1a), is described. The apparatus includes an electrochemical coating bath (13), which has a coating tank (12) filled with an electrochemical coating liquid (14). The apparatus also includes a conveying device (15) for transporting the substrate through the coating bath (13), a light source circuit (60) with light sources (64) for irradiating the substrate (1) and an electrolytic cell rectifier circuit (50) for the substrate with anodes (54). The apparatus is characterized by a device for generating synchronous current pulses and light pulses, so that during a time interval between the current pulses the irradiating of the substrate or substrates is interrupted. A process for electrochemical plating of the surface of the substrate or substrates is also described.
Abstract:
An apparatus for treating the surface of an object to be treated comprising introducing a surface treatment fluid into a reaction vessel (4) capable of receiving an object, introducing the surface treatment fluid into a separation vessel (14) after the object is subjected to surface treatment, and circulating the surface treatment fluid, from which a contaminant has already been removed, to the reaction vessel (4). At the time of treatment on the surface of the object, a circulation passage for the surface treatment fluid including the reaction vessel (4) is communicated and the surface treatment fluid is constantly circulated through the circulation passage.
Abstract:
Fine-grained (average grain size 1 nm to 1,000 nm) metallic coatings optionally containing solid particulates dispersed therein are disclosed. The fine-grained metallic materials are significantly harder and stronger than conventional coatings of the same chemical composition due to Hall-Petch strengthening and have low linear coefficients of thermal expansion (CTEs). The invention provides means for matching the CTE of the fine-grained metallic coating to the one of the substrate by adjusting the composition of the alloy and/or by varying the chemistry and volume fraction of particulates embedded in the coating. The fine-grained metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling. The low CTEs and the ability to match the CTEs of the fine-grained metallic coatings with the CTEs of the substrate minimize dimensional changes during thermal cycling and prevent premature failure.
Abstract:
A plating analyzing method is disclosed for analyzing an electroplating system having an anode, a cathode and plating liquid, based on a Laplace's equation. The method comprises the steps of making the Laplace's equation discrete by Finite Volume Method; forming simultaneous equations based on the discrete Laplace's equation; and calculating potential distribution using the simultaneous equations. A plating analyzing apparatus is also disclosed, which comprises a unit for making the Laplace's equation discrete by Finite Volume Method and dividing the system into a plurality of elements; potential calculating unit for forming simultaneous equations based on the discrete Laplace's equation, and calculating potential distribution using the simultaneous equations; and current density calculating unit for calculating current density distribution based on the potential distribution.
Abstract:
An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system. At least one selective shield material flow mechanism is used in a selective shield material flow assembly.
Abstract:
A process sequence for forming a soft magnetic layer having Hce and Hch of ≦2 Oe, Hk≦5 Oe, and Bs of ≧24 kG is disclosed. A CoFe or CoFe alloy is electroplated in a 10O C to 25O C. bath (pH 2 to 3) containing Co+2 and Fe+2 ions in addition to boric acid and one or more aryl sulfinate salts to promote magnetic softness in the deposited layer. Peak current density is 30 to 60 mA/cm2. A two step magnetic anneal process is performed to further improve softness. An easy axis anneal is followed by a hard axis anneal or vice versa. In an embodiment where the magnetic layer is a pole layer in a write head, the temperature is maintained in a 180O C to 250O C range and the applied magnetic field is kept a 300 Oe or below to prevent degradation of an adjacent read head.