Abstract:
A sling for industrial lifting made of a load-bearing core and a cover. The cover protects the plurality of yarns that make-up the core. Each core yarn is made of a number of core threads twisted together. The core yarns are twisted together where the twist is in the same direction as the individual core strands and a different direction than the twist of the cover. The present invention describes the method of twisting the core yarns together by inserting core yarns substantially parallel into a cover that has a twist opposite of each core strand. As the core strands are inserted into the cover, the twists of the individual core yarns interact with the twist of the cove, resulting in the core yarns twisting together.
Abstract:
A steel cord that is especially useful for reinforcing a crown portion of a tire is provided. In particular, a steel cord free from manufacturing problems existed in the conventional art and allowing for stable quality and good production efficiency is provided, and a rubber-steel cord composite and a tire that are equipped with the same are provided.A steel cord has a multiple-twist structure including N (N=2 to 8) strands 2 that are twisted together, each strand 2 having a plurality of wires 1 that are twisted together. When the diameter of each strand is denoted by d (mm), the diameter of a circle circumscribing the cord is denoted by D (mm), and the twisting pitch of the cord is denoted by P (mm), εc defined by the following expression, εc=√(−b/2+√(b2/4−c))−1 (where b denotes −1+π2(−4R2+d2)/P2, c denotes π2d2k(4π2R2+P2)/P4, R denotes (D−d)/2, and k denotes tan2(π/2−π/N)), satisfies εc≧0.005.
Abstract:
In order that spaces, including a space in the central portion, inside a steel cord used as a reinforcement by being embedded in a tire or the like are filled with an uncured rubber, the uncured rubber is coated on plural steel core filaments which are then stranded to form a single layer steel cord, the core then being stranded with uncoated outer layer filaments. Consequently, it is possible to exhibit satisfactory corrosion resistance and satisfactory fatigue resistance as a steel cord, shorten a curing time in tire component assembling or the like to attain energy saving and prolong the life of a steel cord itself and the life of a tire or the like using the same as a reinforcement. Further, production can be performed at low cost.
Abstract:
The present invention relates to a three-layered metal cable of construction L+M+N usable as a reinforcing element for a tire carcass reinforcement, comprising an inner layer C1 having L wires of diameter d1 with L being from 1 to 4, surrounded by an intermediate layer C2 of M wires of diameter d2 wound together in a helix at a pitch p2 with M being from 3 to 12, said layer C2 being surrounded by an outer layer C3 of N wires of diameter d3 wound together in a helix at a pitch p3 with N being from 8 to 20, said cable being characterised in that a sheath formed of a cross-linkable or cross-linked rubber composition based on at least one diene elastomer covers at least said layer C2. The invention furthermore relates to the articles or semi-finished products made of plastics material and/or rubber which are reinforced by such a multi-layer cable, in particular to tires used in industrial vehicles, more particularly heavy-vehicle tires and their carcass reinforcement plies.
Abstract:
A steel cord (10) adapted for the reinforcement of elastomers comprises: a core steel filament (12) with a core steel filament diameter dc and coated with a polymer (14); six intermediate steel filaments (16) with an intermediate steel filament diameter di smaller than or equal to the core steel filament diameter dc; these intermediate steel filaments (16) are twisted around the core steel filament (12); ten or eleven outer steel filaments (18) with an outer steel filament diameter do smaller than or equal to the intermediate steel filament diameter dl; these outer steel filaments (18) are twisted around the intermediate steel filaments (16), the outer steel filaments (18) are preformed in order to allow rubber penetration inside the core (10). The core steel filament (12), the intermediate steel filaments (16) and the outer steel filaments (18) all have a tensile strength at least 2600 MPa. The cord (10) has an outer diameter D according to following formula: D≦dc+2×di+2×do+0.1 wherein all diameters are expressed in millimeter (mm).
Abstract:
A rope comprising a plurality of bundle groups, each of said bundle groups having a periphery and comprising a plurality of high strength fibers, at least one low coefficient of friction fiber disposed around at least a portion of the periphery of at least one of the bundle groups.
Abstract:
A steel cord comprises a core with one or more core steel filaments and further comprises a first layer of intermediate steel filaments twisted around the core, and a second layer of second steel filaments twisted around the first layer. At least one of the intermediate steel filaments is individually coated by means of a polymer with a minimum thickness of 0.010 mm. The polymer reduces the fretting between the coated intermediate steel filaments and the other steel filaments and makes the steel cord suitable for reinforcement of carcass plies of a tire.
Abstract:
A pneumatic tire comprises a carcass extending between the bead portions and a band disposed radially outside the carcass in a tread portion and made of at least one cord laid at an angle of not more than 5 degrees with respect to the tire equator, and the band cord is made of steel filaments twisted together so as to have a variable elasticity modulus which has a transitional point from under 1000 kgf/sq.mm to over 1000 kgf/sq.mm at an elongation percentage in a range of from 1% to 5%. Preferably, the average elasticity modulus ELn of the cord from zero elongation to the transitional point is in a range of from 500 to 750 kgf/sq.mm, and the average elasticity modulus EHn of the cord from the transitional point to a breaking point of the cord is in a range of from 1200 to 3000 kgf/sq.mm.
Abstract:
A tire cord having core filaments (10) performed into a helical configuration while maintaining the core filaments (10) in a parallel, side-by-side relationship. The core filaments (10) are not twisted or stranded together. High tensile strength sheath filaments (11) are also performed into a flattened helical configuration so that the sheath filaments (11) can be wrapped around the side-by-side core filaments such that the sheath filaments (11) do not put such tension on the core filaments (10) as to cause the core filaments (10) to bunch. The core filaments (10) are maintained in a flat side-by-side configuration so that no voids are formed and rubber can penetrate into the tire cord. The core filaments (10) may number from three to six and the sheath filaments (11) from one to seven. The cross-section of the tire cord is flattened and confined within an oval-shaped outer bound (21), the oval outer bound (21) being characterized by a major axis and a minor axis. It is desirable that the minor axis be no greater than 60% of the major axis to create the appropriate difference in the bending modulus of the tire cord in the horizontal versus the vertical direction.
Abstract:
The present invention relates to a metal cable usable for reinforcing a carcass reinforcement for a tire, such as a heavy-vehicle tire, to a composite fabric usable as a ply for such a carcass reinforcement, to a carcass reinforcement comprising this fabric and to a tire incorporating this carcass reinforcement. A metal cable according to the invention comprises a textile wrap, and is such that said wrap is formed of an aromatic thermotropic polyester or polyester amide. A composite fabric according to the invention is such that it comprises a rubber composition which is reinforced by said cables. A tire according to the invention has its carcass reinforcement comprising said composite fabric.