摘要:
The present disclosure includes methods and apparatuses for mapping between program states and data patterns. One method includes: programming a group of G memory cells such that a combination of respective program states of the group maps to a constellation point corresponding to a received N unit data pattern, the group used to store N/G units of data per memory cell; wherein the constellation point is one of a number of constellation points of a constellation associated with mapping respective program state combinations of the group of memory cells to N unit data patterns; and wherein the constellation comprises a first mapping shell and a second mapping shell, the constellation points corresponding to the respective first and second mapping shells determined, at least partially, based on a polynomial expression of order equal to G.
摘要:
A method of reprogramming a nonvolatile memory device, comprising setting up bit lines of selected memory cells according to logic values of first and second latches of a page buffer connected to the bit lines, supplying a program pulse to the selected memory cells, performing a program verify operation on the selected memory cells using the first and second latches, and performing a predictive program operation on the selected memory cells according to a result of the program verify operation. In the predictive program operation, bit lines of the selected memory cells are setup according to a logic value of a third latch of the page buffer that corresponds to each of the selected memory cells.
摘要:
Provided is a semiconductor memory device and a method of erasing the same. The semiconductor memory device includes a memory cell array including a plurality of memory cells; and a peripheral circuit unit configured to apply a pre-erase voltage, an erase voltage, and an erase operation voltage to the memory cell array so as to erase data stored in the plurality of memory cells when an erase operation is performed. The memory cell array includes a plurality of source selection transistors, the plurality of memory cells, and a plurality of drain selection transistors that are connected between a source line and a bit line. When the pre-erase voltage is applied to the source line during the erase operation, different erase operation voltages are applied to an outermost source selection transistor adjacent to the source line among the plurality of source selection transistor and the other selection transistors.
摘要:
A method of reprogramming a nonvolatile memory device, comprising setting up bit lines of selected memory cells according to logic values of first and second latches of a page buffer connected to the bit lines, supplying a program pulse to the selected memory cells, performing a program verify operation on the selected memory cells using the first and second latches, and performing a predictive program operation on the selected memory cells according to a result of the program verify operation. In the predictive program operation, bit lines of the selected memory cells are setup according to a logic value of a third latch of the page buffer that corresponds to each of the selected memory cells.
摘要:
Any number of Serial Peripheral Interface (“SPI”) flash memory die may be stacked and packaged using any desired multi-chip packaging technique to realize any one or combination of various capabilities such as low per-bit cost, high density storage, code shadowing to RAM, and fast random access for “execute in place” applications, while preserving the advantages of the SPI interface. During device manufacture, each of the stacked die is assigned a unique identifier or “Die ID” relative to the other stacked die in the package. During normal operations, the unique Die IDs are used by a Die Select instruction to enable one of the stacked die to respond to subsequent instructions on the SPI interface, while disabling the other stacked die in the package from responding to subsequent instructions but for certain “Universal” instructions which include the Die Select instruction. Concurrent operations by the stacked die are supported.
摘要:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
摘要:
A method for data storage includes storing data in a group of memory cells, by encoding the data using at least an outer code and an inner code, and optionally inverting the encoded data prior to storing the encoded data in the memory cells. The encoded data is read from the memory cells, and inner code decoding is applied to the read encoded data to produce a decoding result. At least part of the read data is conditionally inverted, depending on the decoding result of the inner code.
摘要:
A method of writing data to non-volatile computer storage is disclosed. A logical page of data is received and stored in an intermediate storage. A first portion of the logical page is read from the intermediate storage and written to a first physical page in the non-volatile computer storage. A second portion of the logical page is read from the intermediate storage and written to a second physical page in the non-volatile computer storage. A method of reading data from non-volatile computer storage is disclosed. A first portion of a logical page is read from a first physical page in the non-volatile computer storage and written in an intermediate storage. A second portion of the logical page is read from a second physical page and written in the intermediate storage. The first portion and the second portion of the logical page are concatenated to form the logical page.
摘要:
Any number of Serial Peripheral Interface (“SPI”) flash memory die may be stacked and packaged using any desired multi-chip packaging technique to realize any one or combination of various capabilities such as low per-bit cost, high density storage, code shadowing to RAM, and fast random access for “execute in place” applications, while preserving the advantages of the SPI interface. During device manufacture, each of the stacked die is assigned a unique identifier or “Die ID” relative to the other stacked die in the package. During normal operations, the unique Die IDs are used by a Die Select instruction to enable one of the stacked die to respond to subsequent instructions on the SPI interface, while disabling the other stacked die in the package from responding to subsequent instructions but for certain “Universal” instructions which include the Die Select instruction. Concurrent operations by the stacked die are supported.
摘要:
A embodiment relates to a method for processing an erase counter comprising erase counter fields, the method comprising the steps of (i) determining an unused erase counter field; (ii) writing a selection code and an address information in the unused erase counter field, wherein the selection code and the address information are combined to determine at least one physical address of a memory.