Abstract:
Described are apparatuses and methods for improving resistive memory energy efficiency and reliability. An apparatus may include a resistive memory cell coupled to a conductive line. The apparatus may further include a driver coupled to the conductive line to drive current for the resistive memory cell during a write operation. The resistance of the driver may be selectively increased for two or more time periods during the write operation for detecting a voltage change on the conductive line. The current for the write operation may be turned off when the voltage change is detected to improve resistive memory energy efficiency and reliability.
Abstract:
A method of reading data from a plurality of bits in a spin-torque magnetoresistive memory array includes performing one or more referenced read operations of the bits, and performing a self-referenced read operation, for example, a destructive self-referenced read operation, of any of the bits not successfully read by the referenced read operation. The referenced read operations can be initiated at the same time or prior to that of the destructive self-referenced read operation.
Abstract:
A method of sensing multi-bit data stored in a resistive memory cell includes; determining a resistive value range for the memory cell by performing a first read operation using a first read voltage and a first reference current, determining whether the multi-bit data stored in the resistive memory cell has a first program state, upon determining that the multi-bit data stored does not have the first program state, selecting a second read voltage different from the first read voltage in response to the resistive value range of the resistive memory cell, and using the second read voltage to again determine whether the multi-bit data stored in the resistive memory cell has the first program state.
Abstract:
A semiconductor memory device according to an embodiment includes a control circuit configured to apply a first voltage to a selected first line, apply a second voltage to a selected second line, and apply a third voltage and a fourth voltage to a non-selected first line and a non-selected second line in a setting operation, respectively. The control circuit includes a detection circuit configured to detect a transition of a resistance state of a selected memory cell using a reference voltage. The control circuit is configured to execute a read operation in which the control circuit applies the third voltage to the selected first line and the non-selected first line, applies the second voltage to the selected second line, and applies the fourth voltage to the non-selected second line, and set the reference voltage based on a voltage value of the selected second line.
Abstract:
A differential bit cell includes two memory elements that are configured to have different states. Each of the two memory elements is connected to a respective switching element. Each of these switching elements may have process variances, which may result in a degradation of read and/or write margins. To mitigate the effect of such variances, another switching element is coupled to the two memory elements and their respective switching elements in a manner that couples the aforementioned switching elements in a parallel fashion. In this way, the mismatch effects between the switching elements can be negated during read operations. During programming operations, such a configuration allows for the programming of both memory elements to different states with a single current pulse and also reduces the effective resistance of the programming path.
Abstract:
A memory devices and methods can use multiple sense operations to detect a state of memory elements in a marginal state. In some embodiments, an evaluation circuit can generates an output value for a memory element in response multiple sense results for the same memory element. In other embodiments, a memory device can include both standard and strong read operations, where strong read operations apply more energy to a selected memory element than a standard read operation.
Abstract:
The present disclosure includes apparatuses and methods for sensing a resistance variable memory cell. A number of embodiments include programming a memory cell to an initial data state and determining a data state of the memory cell by applying a programming signal to the memory cell, the programming signal associated with programming memory cells to a particular data state, and determining whether the data state of the memory cell changes from the initial data state to the particular data state during application of the programming signal.
Abstract:
An apparatus is described having invert determination logic circuitry to determine if a read data path that transports data read from a PCMS memory device is to be inverted or not inverted as a function of whether information represented by the data was last written in an inverted or non inverted logical state to the PCMS memory device during a refresh of said PCMS memory device.
Abstract:
Current appearing on a bit-line with no memory cells asserted may be used during a bit-line pre-charge time before a read is performed so as to bias a gate-drain shorted PMOS pull-up device connected between the bit-line and a power supply at a VDD potential. The capacitance connected to the gate of this PMOS pull-up device may be used to “store” the resultant gate-source voltage when the drain is disconnected once the pre-charge time is completed. Once the read operation starts, the current of the PMOS pull-up device that has the “stored” resultant gate-source voltage and the “stored” resultant gate-source voltage itself are re-used as the references, or multi-reference, for sensing the state of an asserted memory cell connected to the bit-line during the read operation thereof.
Abstract:
A method for read measurement of resistive memory cells having s≧2 programmable cell-states includes applying to each cell at least one initial voltage and making a measurement indicative of cell current due to the initial voltage; determining a read voltage for the cell in dependence on the measurement; applying the read voltage to the cell; making a read measurement indicative of cell current due to the read voltage; and outputting a cell-state metric dependent on the read measurement; wherein the read voltages for cells are determined in such a manner that the cell-state metric exhibits a desired property.