Abstract:
A solid state radiation sensitive field emitter cathode comprising a single crystal semiconductor member having a body portion with a uniform array of closely spaced and very sharp electron emitting projections from one surface in the form of needles or whisker like members. Electrons are emitted into vacuum when a planar-parallel positive anode is mounted in close proximity to the surface. The cathode is responsive to input radiation such as electrons or light directed onto the cathode in modifying the electron emission from the array of electron emitter projections. The method of manufacturing the cathode by providing a predetermined pattern or mosaic of islands of a material exhibiting a greater etch resistant property than the semiconductor material, on a wafer of a semiconductor material and then etching out between and beneath the islands to undercut to a point where the islands are supported by only a small whisker of the semiconductor material. Removal of the islands results in an electron emitter being exposed from beneath each island wherein carriers generated within the body portion and also carriers generated within the depletion regions of the tips diffuse to the electron emitter projections wherein establishment of a high electric field at the tips of the electron emitter projections results in electron emission primarily due to conduction band tunneling. The device provides about 106 emitting points of close proximity so as to effect photographic-like imaging.
Abstract:
A junction-type photoemitter is disclosed. The photoemitter includes a heavily doped P-type semiconductive substrate for absorbing photons of radiation to be converted into electrons to be emitted. An alkali metal layer such as cesium metal is formed over the substrate member for filling the surface energy states of the P-semiconductive substrate. Finally, a layer of cesium oxide is formed over the alkali metal layer to provide a low-work function surface facing the vacuum into which the electrons are emitted from the photoemitter. The substrate member may be made of a III-V compound semiconductor or an alloy of two different III-V compound semiconductors (each compound semiconductor including one element from the third group of Periodic Table and another element of the fifth group of the Periodic Table) to provide a semiconductive band-gap energy which is equal to or slightly more than the work function of the cesium oxide layer. The P-type semiconductive substrate member is heavily doped with a concentration of acceptor dopant greater than 3 X 1018 acceptors per cubic centimeter. Likewise, the cesium oxide layer is heavily doped with donor atoms of cesium to provide the relatively low-work function characteristic of such material. In a preferred embodiment, the P-semiconductive substrate is formed of InP or an alloy of InP and InAs. The photoemitter has improved conversion efficiency in the wavelength range from 0.5 microns to 1.37 microns wavelength.
Abstract:
A semiconductor photocathode 1 includes: a transparent substrate 11; a first electrode 13, formed on the transparent substrate 11 and enabling passage of light that has been transmitted through the transparent substrate 11; a window layer 14, formed on the first electrode 13 and formed of a semiconductor material with a thickness of no less than 10 nm and no more than 200 nm; a light absorbing layer 15, formed on the window layer 14, formed of a semiconductor material that is lattice matched to the window layer 14, is narrower in energy band gap than the window layer 14, and in which photoelectrons are excited in response to the incidence of light; an electron emission layer 16, formed on the light absorbing layer 15, formed of a semiconductor material that is lattice matched to the light absorbing layer 15, and emitting the photoelectrons excited in the light absorbing layer 15 to the exterior from a surface; and a second electrode 18, formed on the electron emission layer.
Abstract:
Disclosed is a photoelectric surface including: a first group III nitride semiconductor layer that produces photoelectrons according to incidence of ultraviolet rays; and a second group III nitride semiconductor layer provided adjacent to the first group III nitride semiconductor layer and made of a thin-film crystal having c-axis orientation in a thickness direction, the second group III nitride semiconductor layer having an Al composition higher than that of the first group III nitride semiconductor layer.
Abstract:
A low-photon flux image-intensified electronic camera comprises a gallium arsenide phosphide (GaAsP) photocathode in a high vacuum tube assembly behind a hermetic front seal to receive image photons. Such is cooled by a Peltier device to −20° C. to 0° C., and followed by a dual microchannel plate. The microchannels in each plate are oppositely longitudinally tilted away from the concentric to restrict positive ions that would otherwise contribute to the generation high brightness “scintillation” noise events at the output of the image. A phosphor-coated output fiberoptic conducts intensified light to an image sensor device. This too is chilled and produces a camera signal output. A high voltage power supply connected to the dual microchannel plate provides for gain control and photocathode gating and shuttering. A fiberoptic taper is used at the output of the image intensifier vacuum tube as a minifier between the internal output fiberoptic and the image sensor.
Abstract:
In the case of a thick light-absorbing layer 2, a phenomenon of a decrease in the time resolution occurs. However, when the thickness of the light-absorbing layer 2 is limited, a portion of low electron concentration in one electron group is cut out, and hence overlap regions of adjacent electron concentration distributions decrease. Therefore, by shortening the transit time necessary for the passage of electrons, regions of overlapping electron distributions due to diffusion can also be suppressed. Furthermore, the strength of an electric field within a light-absorbing layer can be increased by thinning the light-absorbing layer. Therefore, the time resolution of infrared rays can be remarkably improved by a synergistic action of these effects. If it is assumed that the time resolution is 40 ps (picoseconds), for example, when the thickness of a light-absorbing layer is 1.3 μm which is nearly equal to the wavelength of infrared, then a possible time resolution is 7.5 ps when this thickness is 0.19 μm.
Abstract:
A cathode structure for an image intensifier tube operates to extend the spectral range of an image intensifier to the short wavelength infrared (SWIR) range of the electromagnetic spectrum, which is between 1.0 to 1.75 nullm. The cathode structure utilizes a multi-layer structure consisting of a layer of GaSb disposed upon a layer of GaAs. The layers form a heterojunction therebetween where the GaSb material absorbs radiation and the GaAs is for emission characteristics. The doping profiles in each material are used to maximize the effects of band gap offsets of the heterojunction as well as provide a nearly flat conduction band profile for the cathode structure. The condition of nearly flat conduction band is enhanced by the use of blocking contacts at the emission surface of the cathode, where a bias is applied.
Abstract:
An energy dispersive x-ray and gamma-ray photon counter is described. The counter uses a photon sensor which incorporates a unique photocathode called Advanced Semiconductor Emitter Technology for X-rays (ASET-X) as its critical element for converting the detected photons to electrons which are emitted into a vacuum. The electrons are multiplied by accelerations and collisions creating a signal larger than the sensor noise and thus allowing the photon to be energy resolved very accurately, to within ionization statistics. Because the signal is already above the sensor noise it does not have to be noise filtered therefore allowing high-speed counting. The photon sensor can also be used as a device to visualize and image gamma-ray and x-ray sources.
Abstract:
An electron emitting element including a semiconductor opto-electronic layer having a split valence band and capable of emitting a beam of spin-polarized electrons from an emitting surface thereof upon incidence of an excitation laser radiation upon the emitting surface, and a reflecting mirror formed on one of opposite sides of the opto-electronic layer remote from the emitting surface and cooperating with the emitting surface to effect multiple reflection therebetween of the incident laser radiation. The emitting element may be provided with a semiconductor light modulator element for modulating the intensity of the laser radiation incident upon the opto-electronic layer. A laser source may be formed integrally with the emitting element and disposed on the side of the opto-electronic layer remote from the emitting surface.