摘要:
A data storage device including a substrate, a data storage layer on the substrate, and a spin-polarized electron source. The data storage layer comprises a fixed number of atomic layers of a magnetic material which provide the data storage layer with a magnetic anisotropy perpendicular to a surface of the data storage layer. A data magnetic field is created in the data storage layer. The data magnetic field is polarized either in a first direction corresponding to a first data value or in a second direction corresponding to a second data value. Data is stored in the data storage layer by providing a spin-polarized electron having an electron magnetic field with a direction of polarization corresponding to one of the first and the second data values, the electron having a wavelength "characteristic" of unpaired electrons in the data storage layer which cause the magnetic moment of the material, and directing the spin-polarized electron at the data magnetic field to impart the direction of polarization of the electron magnetic field to the data magnetic field. Data is read from the data storage layer by directing the spin-polarized electron at a second wavelength at the data magnetic field and detecting a deflection or attraction of the spin-polarized electron by the data magnetic field. Alternatively, data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field so that the magnetic medium produces a secondary electron and then detecting certain characteristics of the secondary electron.
摘要:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
摘要:
To provide implement a spin-polarized electron generating device having high spin polarization and high external quantum efficiency while allowing a certain degree of freedom in selecting materials of a substrate, a buffer layer, and a strained superlattice layer.In a spin-polarized electron generating device having a substrate, a buffer layer, and a strained superlattice layer formed on the buffer layer, an intermediate layer formed of a crystal having a lattice constant greater than that of a crystal used to form the buffer layer intervenes between the substrate and the buffer layer. With this arrangement, tensile strain causes cracks to be formed in the buffer layer in a direction perpendicular to the substrate, whereby the buffer layer has mosaic-like appearance. As a result, glide dislocations in an oblique direction do not propagate to the strained superlattice layer to be grown on the buffer layer, thereby improving crystallinity of the strained superlattice layer. Accordingly, spin polarization of excited electrons and external quantum efficiency of polarized electrons improve.
摘要:
An exemplary spin-polarized electron source includes a cathode, and a one-dimensional nanostructure made of a compound (e.g., group III-V) semiconductor with local polarized gap states. The one-dimensional nanostructure includes a first end portion electrically connected with the cathode and a second end portion located/directed away from the cathode. The second end portion of the one-dimensional nanostructure functions as a polarized electron emission tip and is configured (i.e., structured and arranged) for emitting a spin-polarized electron current/beam under an effect of selectably one of a magnetic field induction and a circularly polarized light beam excitation when a predetermined negative bias voltage is applied to the cathode. Furthermore, a spin-polarized scanning tunneling microscope incorporating such a spin-polarized electron source is also provided.
摘要:
A data storage device including a substrate, a data storage layer on the substrate, and a spin-polarized electron source. The data storage layer comprises a fixed number of atomic layers of a magnetic material which provide the data storage layer with a magnetic anisotropy perpendicular to a surface of the data storage layer. A data magnetic field is created in the data storage layer. The data magnetic field is polarized either in a first direction corresponding to a first data value or in a second direction corresponding to a second data value. Data is stored in the data storage layer by providing a spin-polarized electron having an electron magnetic field with a direction of polarization corresponding to one of the first and the second data values, the electron having a wavelength "characteristic" of unpaired electrons in the data storage layer which cause the magnetic moment of the material, and directing the spin-polarized electron at the data magnetic field to impart the direction of polarization of the electron magnetic field to the data magnetic field. Data is read from the data storage layer by directing the spin-polarized electron at a second wavelength at the data magnetic field and detecting a deflection or attraction of the spin-polarized electron by the data magnetic field. Alternatively, data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field so that the magnetic medium produces a secondary electron and then detecting certain characteristics of the secondary electron.
摘要:
A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy. A semiconductor device for emitting, upon receiving a light energy, a highly spin-polarized electron beam, including a first compound semiconductor layer formed of gallium arsenide phosphide, GaAs.sub.1-x P.sub.x, and having a first lattice constant; and a second compound semiconductor layer provided on the first semiconductor layer, the second semiconductor layer having a second lattice constant different from the first lattice constant and a thickness, t, smaller than the thickness of the first semiconductor layer.
摘要:
An apparatus for spin polarizing a particle beam is adapted to process an input particle beam in such a way as to generate an at least partially spin polarized output particle beam. A vortex beam generator for imparting orbital angular momentum to the input particle beam. An electromagnetic field generator generates a transverse magnetic field, space-variant and symmetric with respect to the axis of the input particle beam, in such a way as to change the spin of the particles and attach thereto different values of orbital angular momentum in dependence on their input spin values. A beam component separating group spatially separates the particles in dependence on their orbital angular momentum values, in such a way as to obtain the at least partially spin polarized output particle beam.
摘要:
A spin-polarized electron generating device includes a substrate, a buffer layer, a strained superlattice layer formed on the buffer layer, and an intermediate layer formed of a crystal having a lattice constant greater than a lattice constant of a crystal of the buffer layer, the intermediate layer intervening between the substrate and the buffer layer. The buffer layer includes cracks formed in a direction perpendicular to the substrate by tensile strain.
摘要:
A data storage medium comprising a substrate and a data storage layer formed on the substrate. The data storage layer comprises a fixed number of atomic layers of a magnetic material which provide the data storage layer with a magnetic anisotropy perpendicular to a surface of the data storage layer. A data magnetic field is created in the data storage layer. The data magnetic field is polarized either in a first direction corresponding to a first data value or in a second direction corresponding to a second data value. Data is stored in the data storage layer by providing a spin-polarized electron having an electron magnetic field with a direction of polarization corresponding to one of the first and the second data values, and directing the spin-polarized electron at the data magnetic field to impart the direction of polarization of the electron magnetic field to the data magnetic field. Data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field and detecting a deflection or attraction of the spin-polarized electron by the data magnetic field. Alternatively, data is read from the data storage layer by directing the spin-polarized electron at the data magnetic field so that the magnetic medium produces a secondary electron and then detecting certain characteristics of the secondary electron.
摘要:
Spin polarized electron source using an emissive micropoint cathode. At least one portion of each micropoint, including the top of the latter, is ferromagnetic, so that the electrons emitted by the cathode are spin polarized in a given direction, when the portion is subject to a magnetic field parallel to the given direction.