Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
An ion deflector, for deflecting a beam of charged particles along an arc in a deflection plane, includes a pair of non-spherical deflection electrodes adapted for being charged with different voltages. The pair of deflection electrodes are configured to control, in both the deflection plane and in a direction perpendicular to the deflection plane, a cross sectional spread of charged particles in a deflected beam that exits the ion deflector. In some embodiments, a first electrode has a first height perpendicular to the deflection plane and a second electrode has a different second height.
Abstract:
A lens adjustment method and a lens adjustment system which adjust a plurality of multi-pole lenses of an electron spectrometer attached to a transmission electron microscope, optimum conditions of the multi-pole lenses are determined through simulation based on a parameter design method using exciting currents of the multi-pole lenses as parameters.
Abstract:
According to the present invention, a charged particle beam device has an unlimitedly rotatable sample stage and an electric field control electrode for correcting electric field distortion at a sample peripheral part. A voltage is applied to a sample on the unlimitedly rotatable sample stage through a retarding electrode that is in contact with a holder receiver at a rotation center of a rotary stage. An equipotential plane on the electric field control electrode is varied by applying a voltage to the electric field control electrode, and following this the equipotential plane at a sample edge is corrected, which enables the sample to be observed as far as its edge.
Abstract:
A ribbon ion beam system, comprising an ion source configured to generate a ribbon ion beam along a first beam path, wherein the ribbon ion beam enters a mass analysis magnet having a height dimension (h1) and a long dimension (w1) that is perpendicular to an xy plane, wherein the mass analysis magnet is configured with its momentum dispersive xy plane to receive the ribbon ion beam and to provide magnetic fields to transmit the ribbon ion beam along a second beam path, wherein the ribbon ion beam exiting the mass analysis magnet is divergent in the non-dispersive xz plane and convergent in the xy plane, a mass selection slit for receiving the divergent ribbon ion beam and selecting desired ion species of the ribbon ion beam exiting the mass analysis magnet, an angle correction device configured to receive the divergent ribbon ion beam exiting the mass selection slit into a parallel ribbon ion beam in the horizontal xz plane and a diverging ribbon ion beam in an xy plane along a third beam path, and wherein the parallel ribbon beam has a variable height (h2) and a long dimension, width (w2).
Abstract:
A ribbon ion beam system, comprising an ion source configured to generate a ribbon ion beam along a first beam path, wherein the ribbon ion beam enters a mass analysis magnet having a height dimension (h1) and a long dimension (w1) that is perpendicular to an xy plane, wherein the mass analysis magnet is configured with its momentum dispersive xy plane to receive the ribbon ion beam and to provide magnetic fields to transmit the ribbon ion beam along a second beam path, wherein the ribbon ion beam exiting the mass analysis magnet is divergent in the non-dispersive xz plane and convergent in the xy plane, a mass selection slit for receiving the divergent ribbon ion beam and selecting desired ion species of the ribbon ion beam exiting the mass analysis magnet, an angle correction device configured to receive the divergent ribbon ion beam exiting the mass selection slit into a parallel ribbon ion beam in the horizontal xz plane and a diverging ribbon ion beam in an xy plane along a third beam path, and wherein the parallel ribbon beam has a variable height (h2) and a long dimension, width (w2).
Abstract:
One embodiment disclosed pertains to a method for inspecting a substrate. The method includes inserting the substrate into a holding place of a substrate holder, moving the substrate holder under an electron beam, and applying a voltage to a conductive element of the substrate holder. The voltage applied to the conductive element reduces a substrate edge effect. Another embodiment disclosed relates to an apparatus for holding a substrate that reduces a substrate edge effect. The apparatus includes a holding place for insertion of the substrate and a conductive element. The conductive element is positioned so as to be located within a gap between an edge of the holding place and an edge of the substrate.
Abstract:
A blur and image distortion of an electron beam on a sample are reduced even at a large converging angle of the electron beam. A reduction projection optical system (120) has an immersion lens (108) on the image plane (wafer 111) side. A collimator lens (pupil control optical system) 106 is arranged between the reduction projection optical system (120) and its object plane (mask 104). The collimator lens (106) arranges the entrance pupil (110) of the reduction projection optical system (120) at a finite position from the image plane on the downstream side of the image plane of the reduction projection optical system (120). This can minimize any blur and image distortion of an electron beam on a sample.
Abstract:
In a particle multibeam lithography apparatus an illumination system (242) having a particle source (203) produces an illuminating beam (205) of electrically charged particles, and a multibeam optical system (208) positioned after the illumination system (242) and comprising at least one aperture plate having an array of a plurality of apertures to form a plurality of sub-beams focuses the sub-beams onto the surface of a substrate (220), wherein for each sub-beam (207) a deflection unit (210) is positioned within the multibeam optical system and adapted to correct individual imaging aberrations of the respective sub-beam with respect to the desired target position and/or position the sub-beam during a writing process an the substrate surface Preferably, for each sub-beam the respective aperture of the first aperture plate defines the size and shape of the sub-beam cross-section and the multibeam optical system produces a demagnified image of the aperture on the substrate surface, with a demagnification of at least 20:1.
Abstract:
Apparatus and methods are disclosed for reducing aberrations caused by space-charged effects in charged-particle-beam (CPB) microlithography. A representative CPB microlithography apparatus includes illumination-optical and projection-optical systems and a beam-correction-optical system. The beam-correction-optical system is connected to a control computer configured to compute correction data for correcting a space-charge-effect (SCE)-based aberration. The correction data are calculated from the distribution of pattern elements in the exposure region, the illumination-beam current, the spread-angle distribution of the illumination beam, the beam-accelerating voltage of the illumination beam, the axial distance between the reticle and substrate, and optical characteristics of the projection-optical system.